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Compute-Storage Separation

● Virtual hard disks (VHDs) and VMs on different physical clusters

● Easy VM migration when VMs are unavailable

○ Can create VM on different host/cluster

○ Simply attach VHD

● Load balancing through many-to-many relationship

○ Many VMs can use the same VHD

○ One VM can use multiple VHDs

● VHD driver in hypervisor level send RPCs to storage service



VHD Failure

● In Azure, shutdown guest OS if unresponsive for 2 minutes

○ Mainly to protect data integrity

○ Notify the customers of VHD access failure

○ Maintain customers’ SLAs



Previous Approach

● SREs examined different parts of the system

○ Compute team, storage team, and network team

● 10s of minutes or sometimes hours to localize the failure

● One network failure led to 363 incidents

○ Incident was moved from one team to another

● In short, not accurate and not efficient



Bipartite Model



Goals of the Paper

● Stronger granularity

○ Simple bipartite model does not work for multi-tier networks

● Detection of Gray failures

● Fast detection

○ Aim for 15 minutes (availability objective)



Model - Network

● Represent Clos topology as tree

○ Start from Top-of-Rack switches

○ Group every Tier 1 switch that connects to ToR

○ Group every Tier 2 switch that connects to T1 switch

○ And so on….

○ Finally, determine midpoint by collecting shortest paths

● Discussion: Valid approach?



Model - Network



Derivation of Probabilities



Derivation of Probabilities

ni is the number of VMs
ei is the number of VMs with VHD failures for a given period
pj is the probability that the path is fine

Next step: Model approximation with noise and create system of equations



Derivation of Probabilities



Interpretation of Equations

● A significantly negative Bj usually suggests to blame that component

● Necessity to modify data

○ Failures are normally independent from each other

○ Array of B should theoretically be mostly 0’s

○ Apply Lasso estimate with a parameter ƛ (black-box)

■ Tradeoff: goodness-of-fit versus sparsity



Hypothesis Testing

1. Define a z-score from the mean and standard deviation of a value

2. Compute the p-value

○ In this paper, assume Gaussian distribution

○ Is this a safe assumption?

3. Make decision based on the p-value

○ If the p-value is less than 1%, blame the component



Deepview System

● Non-real-time information

○ Network topology, account information, compute-storage

○ Periodic snapshots every few hours

■ Sufficient?

● Real-time information

○ VHD failures send signals

○ Implement a streaming system



Deepview System



Deepview System

● Computation DAG

● NRT Scheduler

● Sparse Matrix/Region Filtering

○ Used to reduce runtime

● Coordinate Descent

○ One of the fastest ways to solve Lasso regression

● Cross-validation for ƛ



Evaluation: ToR Reboot

● All VMs communicate with a single ToR

○ Failure means lack of communication with VHD

● Deepview predicts and verifies prediction

● Chose the correct ToR out of 288 components

○ p-value much less than 0.01



Evaluation: Storage Gray Failure

● At hour 0, three components with failure probability > 0

○ Storage cluster S0 - 0.34

○ Compute cluster C0 - 0.002

○ Compute cluster C1 - 0.047

● Only S0 corresponded to p-value less than 1%

● Similar case for network failures



Other Algorithms

● Boolean-Tomo and SCORE

○ Greedy algorithms

○ Goal: Identify bad paths based on threshold

○ Iterative discovery or computation

● Approximate Bayesian Network

○ Exponential runtime

○ Lack of meaningful results



Precision and Recall



How well does it perform?

● Lasso regression
○ Impossible to find universally optimal Lambda

● Hypothesis testing
○ Even with low failure probability, hypothesis testing works

○ Example: Storage cluster gray failure case

● Runtime of Deepview
○ Worst-case: 18.3 seconds

● TTD: under 10 minutes



ToR - Single-point-of-Failure

● Questions about ToR as bottleneck for availability

● Deepview detects ToR failure

○ More data!

● First, <0.1% of switches experience ToR reboots

● Second, 90% of reboots are soft



Network Path

● Distribution of network path

○ 51.4% go up to T2

○ 41.0% go up to T3

○ Rest go beyond

● Leverage Deepview data

● 11.4% increase in VHD failure rate with T3 or above

● Maybe beneficial to keep VHD and VM close



Machine Learning

● Can a ML approach work in this situation?

● Possible weakness: Need richer signals

● Paper mentions NetPoirot

○ Features: TCP statistics

○ Labels: failure locations

○ Complementary

● BUT can a ML approach replace or outperform Deepview?



Pros and Cons

Pros:

● Application of simple statistical ideas in a real-world system problem

● Presentation of valuable lessons learned through the data acquired in 

Deepview

Cons:

● Some parts of the model have to be inferred through reading different 

parts (could have been more clear)

● Lack of discussion on more examples of cases
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