
Performance Engineering for 
Cloud Microservices

Haoran Qiu
UIUC System Reading Group

Feb 12, 2020



Outline - Two Parts

I. Seer 1: Leveraging Big Data to Navigate the Complexity of 

Performance Debugging in Cloud Microservices, ASPLOS ’19, Cornell 

SAIL Group

II. Put Seer Into A Broader Perspective - Performance Engineering for 

Cloud Microservices

1 Gan, Yu, et al. "Seer: Leveraging big data to navigate the complexity of performance debugging in cloud microservices." Proceedings of the 
Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems. 2019.

2



From Monolith to Microservices

3

➢ All functionality in a single service
○ makes application evolution 

cumbersome and error prone

○ limits programming languages, tools, 

frameworks, etc.

➢ Fine-grained, single-concerned, 

loosely-coupled services
○ Modularity, Flexibility, Faster Dev, 

Elasticity...

○ Stricter QoS & Cascading QoS Violations & 

Unpredictable Performance -> A-posteriori 

Debugging Impractical



From Monolith to Microservices

➢ Microservices are getting popular & it’s important to do guarantee “service 

level agreement/objectives” for provided services @Amazon, Netflix

➔ Seer’s Goal: proactive performance debugging for interactive microservices
○ to anticipate & localize QoS violations (accuracy & completeness)

○ to provide insights to improve microservices design and deployment

4



Perf-Debugging Challenges for Microservices (1)

5

● Complicated cluster 

management & performance 

debugging:
○ stricter QoS requirements

○ dependencies cause cascading 

QoS violations

○ difficult to isolate root cause of 

performance unpredictability

Demo: http://www.csl.cornell.edu/~delimitrou/2019.asplos.seer.demo_motivation.mp4

http://www.csl.cornell.edu/~delimitrou/2019.asplos.seer.demo_motivation.mp4


Perf-Debugging Challenges for Microservices (2)

6

● Empirical performance 

debugging ⇨ too slow ⇨ 

bottlenecks propagate
○ impractical by manual check or 

user feedback given the scale 

and complexity

○ long recovery time for 

performance



Perf-Debugging Challenges for Microservices (3)

7

● Hard to guarantee predictable 

performance

○ datacenter hardware 

heterogeneity

○ frequent server replacement & 

application update



Seer Overview

● Uses ML to identify the root 

cause of an upcoming QoS 

violation:
○ massive amount of distributed 

traces collected over time

○ uses targeted per-server 

hardware probes to determine 

the cause of the QoS violation

8

● Informs admin to take proactive action & prevent QoS violation
○ needs to predict 100s of msec -> a few sec in the future (not yet met)



Two-level Tracing (1)

● Distributed RPC-level tracing
○ similar to Dapper, Zipkin, based on Apache 

Thrift timing interface

○ collects

■ per-microservice latencies

■ inter- and intra-microservice queue 

lengths

○ overhead: <0.15% in QPS, <0.1% in latency

○ traces are associated and aggregated in a 

Cassandra database

● Fine-grained instrumentation
○ distinguish network processing and 

application computation 9



Two-level Tracing (2) - Hardware Monitoring

● Per-node (problematic microservices) 

hardware monitoring
○ Private cluster: performance counters & 

utilization monitors

■ CPU, memory capacity and bandwidth, 

network bandwidth, cache contention, 

storage I/O bandwidth

○ Public cluster: 10 tunable contentious 

microbenchmarks

■ targeting on different shared resources

■ each takes 10ms to complete
10



DL for Performance Debugging (1)

● Architecture-agnostic

● Adjust to intra-microservice 

changes over time

● High accuracy

● Good scalability

● Fast inference (within window of 

opportunity)

11



DL for Performance Debugging (2)

● Input signals:
○ container utilization ❌
○ latency ❌
○ queue length ✔

● Output signal:
○ probability that a 

microservice will initiate a 

QoS violation in the near 

future

12



DL for Performance Debugging (3)

● CNN: fast, but cannot predict near 

future

● LSTM (RNN): high accuracy, but 

affected by noisy, non-critical 

microservices

● Hybrid: high accuracy, w/o 

significantly higher overhead
○ CNN reduces the dimensionality & 

filters out non-critical microservices

○ LSTM+Softmax infer the probability of 

QoS violation 13



Methodology & Evaluation

● Training once: slow (hours - days)
○ across payloads, load distributions, request types

○ inject microbenchmarks to force controlled QoS violations -> annotated queue traces

○ weight/bias inference and optimization by SGD

● Incremental retraining in background (manually triggered)
○ more data: transfer learning-based approach

○ application/environment changes in a major way: retrain from scratch

● Inference: continuously streaming traces
○ 20-server dedicated heterogeneous cluster (different server configurations)

○ 10s of cores, >100GB RAM per server

● 4 end-to-end apps: Social Network, Media Service, E-commerce Site, eBank
○ 30-40 unique microservices each

14



Validation (1)

● Setting
○ 100GB tracing data (levels off afterwards)

○ 100ms tracing sampling interval (no benefit for 

more fine-grained sampling)

● 91% accuracy in signaling upcoming QoS 

violations

● 88% accuracy in attributing QoS 

violation to correct microservice

15

Prediction of QoS Violations in the 
Next 100ms



Validation (2)

● Setting
○ 100GB tracing data (levels off afterwards)

○ 100ms tracing sampling interval (no benefit for 

more fine-grained sampling)

● Seer can foresee 91% injected QoS 

violations (84/95 early enough to take 

action)
○ Utilization: threshold-based approach

○ App-only: limited version of Seer (only app queues)

○ Net-only: limited version of Seer (only net queues)

○ Ground-truth: injection campaign

16

Prediction of QoS Violations in the 
Next 100ms



Avoiding QoS Violations

● Identify cause of QoS violation
○ private cluster: performance counters & utilization monitors (threshold-based)

○ public cluster: contentious microbenchmarks (check one by one)

● Adjust resource allocation
○ CPU/Memory/IO contention: resize containers

○ Cache contention: Intel cache allocation technology (CAT) for last level cache (LLC) partitioning

○ Network contention: Linux traffic control’s hierarchical token bucket (HTB) queueing discipline in qdisc 

for bandwidth partitioning

● Application-level bugs
○ human intervention

17



Questions/Discussion

● Not considered: logic layer load-balancer, replicated instances for each 

individual micro-service

● Intensive Instrumentation + Expert knowledge on microservices
○ Collecting application & network queue lengths

○ Seer doesn’t require domain knowledge about the dependencies (why not?)

● DL: predicting incoming workload patterns (randomness is not predictable)
○ As expected, Seer doesn’t foresee random violations: network switch failure, 

random load spikes, which is usually the case in practice.

● Timing Synchronization on Tracing Data

18

t1 = 
App1 sent-out

t2 = 
App2 received

t2 - t1?



So Far… 

● Microservices become increasingly popular

● Traditional performance debugging techniques do not scale and introduce 

long recovery times

● Seer leverages DL to anticipate QoS violations & find their root causes
○ 91% detection accuracy, avoids 86% of QoS violations

● [?] Seer provides insights on how to better design and deploy complex 

microservices

● [?] Seer provides practical solutions for systems whose scale make previous 

empirical solutions impractical

19

Seer’s Contribution



Performance Engineering for Cloud Microservices

● Why Cloud Computing?
○ Elasticity: dynamically acquire and release resources according to the need;

● [Classical Problem + New Setting] To achieve efficiency, it’s vital to automatically 

and timely provision and deprovision the right type and amount of cloud resources 

to cater to dynamic workloads without breaking the QoS/SLAs.

● MAPE Loop

20

Measurements Analysis

Execution Planning



MAPE Loop (1)

21

Measurements Analysis

Execution Planning

● Performance Indicator
● Monitoring Interval

● Execute Actions
● Cloud Providers’ APIs

● Prediction of QoS 
Violation/Performance/
Workload

● Adaptivity to Changes
● Oscillation Mitigation

● Resource Estimation
● Possible Actions
● Cost Model

Seer



MAPE Loop (2) - Single Application

● Resource Estimation (for given workload)
○ Threshold/Rule-based
○ Fuzzy Inference
○ Application Profiling
○ Analytical Modeling (Queueing Theory)
○ Machine Learning (CNN, Reinforcement Learning)

● Workload Prediction
○ Time-series Analysis: linear regression, autoregressive models (AR), moving 

average (MA), ARMA, Kalman filter, neural networks

● Other Approaches
○ Resource Usage Prediction: linear regression, neural networks, ARMA, etc.

22



MAPE Loop (3) - Microservices

● Divide and Conquer
○ break overall SLA into SLA of each service
○ satisfy individual SLAs to meet the overall SLA
○ problem: some services serve multiple execution paths & hard to know exact 

SLA breakdowns

23

● Bottom-up Approach
○ what-if analysis: each service estimates the change of performance if adding or 

removing one instance
○ aggregate to choose the operations that optimizes the performance

● Performance Violation Prediction + Per-instance Monitoring (Seer)



References

● Seer, ASPLOS 2019, http://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.seer.pdf

● µqSim: Enabling Accurate and Scalable Simulation for Interactive Microservices, 

http://www.csl.cornell.edu/~delimitrou/papers/2019.ispass.qsim.pdf

● Seer Demo: https://www.youtube.com/watch?v=Mf_C2xCpBdc

● Auto-scaling Web Applications in Clouds: https://arxiv.org/abs/1609.09224

● A Review of Auto-scaling Techniques for Elastic Applications in Cloud Environments: 

https://link.springer.com/content/pdf/10.1007/s10723-014-9314-7.pdf

24

Thank you!

http://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.seer.pdf
http://www.csl.cornell.edu/~delimitrou/papers/2019.ispass.qsim.pdf
https://www.youtube.com/watch?v=Mf_C2xCpBdc&feature=youtu.be
https://arxiv.org/abs/1609.09224
https://link.springer.com/content/pdf/10.1007/s10723-014-9314-7.pdf


Appendix - Social Networks

25



Appendix - Survey on Auto-scaling

26


