Performance Engineering for
Cloud Microservices

Haoran Qiu
UIUC System Reading Group
Feb 12, 2020

Outline - Two Parts

|. Seer!: Leveraging Big Data to Navigate the Complexity of
Performance Debugging in Cloud Microservices, ASPLOS ’19, Cornell
SAIL Group

Il. Put Seer Into A Broader Perspective - Performance Engineering for
Cloud Microservices

"Gan, Yu, et al. "Seer: Leveraging big data to navigate the complexity of performance debugging in cloud microservices." Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems. 2019.

From Monolith to Microservices

webserver 2 databases Webserver

. . . datab
Monolith Microservices SR

> All functionality in a single service > Fine-grained, single-concerned,

o makes application evolution loosely-coupled services
cumbersome and error prone o Modularity, Flexibility, Faster Dev,
o limits programming languages, tools, Elasticity...
frameworks, etc. o Stricter QoS & Cascading QoS Violations &

Unpredictable Performance -> A-posteriori
Debugging Impractical

From Monolith to Microservices

> Microservices are getting popular & it’s important to do guarantee “service
level agreement/objectives” for provided services @Amazon, Netflix

=> Seer’s Goal: proactive performance debugging for interactive microservices
o to anticipate & localize QoS violations (accuracy & completeness)
O to provide insights to improve microservices design and deployment

Netflix Twitter Amzon

Perf-Debugging Challenges for Microservices (1)

e Complicated cluster

. @ (
RN A by e S N -, management & performance
;e | LR : £ orerd KOO o _3(0" deb P
Wiy Y e 3 Yeer e i ¥ese €bUgsIng:
:'_ﬁ, BT % : o @@, "l 3 o stricter QoS requirements
b 4 O.. - P Py » @ = 3.? e . .
@ Gge SNV E CF S\ o YO 6T 205 @ o dependencies cause cascading
i g, 3
NS S AT SON SR QoS violations
b ® '
..(’5 (; :@. @ o o.(;,r‘.‘(.:CJ o)
;.gi, . b e o ol e o difficult to isolate root cause of
s 3 ° o? ¢ ® 4 AV > °
34 O G B = () OSSR IC performance unpredictability
.%e. o P) @ . M PR 4
e’ g o® e ¢ pe @ :(
@
‘@° < ¢ @

Demo: http://www.csl.cornell.edu/~delimitrou/2019.asplos.seer.demo motivation.mp4

http://www.csl.cornell.edu/~delimitrou/2019.asplos.seer.demo_motivation.mp4

Perf-Debugging Challenges for Microservices (2)

e Empirical performance

@ (
(h VA ;. ::' o ..‘o.c 7 A ;E ke debugging = too slow =
»e” & ¢ " ® ®° ® o %

'. S o QY oo o b+ *\e .:. r

A S v, SRS X bottlenecks propagate
:'_ﬁ, e a0y a0 % ' lwehte, ‘el o impractical by manual check or
» S - pe ° ._ @ P 3.of ‘. .
i'(;; A 3 ¥ @, o VYA 200 gf @ user feedback given the scale
e ':'. 0 o7 .‘ %o & % @V k (:o’ .
4 2 . :)‘(" - (.f’:,f,(b and complexity

':g D e Ned e TN 502" o long recovery time for

i} Jetw S . el QR BRI performance

5 no" ; o(® o & pe” .C/ - ':(¢

) &

Perf-Debugging Challenges for Microservices (3)

e Hard to guarantee predictable

@ ¢
S RV " hiVal [3e, ;c e performance
#:39:%en 2570 "s :: * '@;c(/‘ YR Y
T 48 ¢ e e .° ° b+ *\e o:' b 9 O
P e el el i e datacenter hardware
:.35 v py e e @@t e, el heterogeneity
& o‘o > & e g e ~ o.f ‘.

N Wala ©3- ¥ @, R O gcjb o frequent server replacement &
INY . S AT SON SR application update
Q1! ®: @, @+ 2407 6%

'3 o vere et ¥ ip@ o’

'(2‘ :(SR S & @‘. < @' ,r};?(..CJ
’.t:' ; e(® o & pe” .C/ : ':(L
@

Seer Overview

e Uses ML to identify the root
|
cause of an upcoming QoS
violation: Es e ot
o massive amount of distributed

traces collected over time
o uses targeted per-server

el
e

hardware probes to determine
the cause of the QoS violation

e Informs admin to take proactive action & prevent QoS violation
o needs to predict 100s of msec -> a few sec in the future (not yet met)

Two-level Tracing (1)

e Distributed RPC-level tracing

@)

similar to Dapper, Zipkin, based on Apache
Thrift timing interface
collects

m per-microservice latencies

m inter- and intra-microservice queue

lengths

overhead: <0.15% in QPS, <0.1% in latency
traces are associated and aggregated in a
Cassandra database

® Fine-grained instrumentation

©)

distinguish network processing and
application computation

User

4

http
WePUI

TraceDB
(Cassandra)

Tracing

Coordinator

Microservice m-1

Packet
filtering

‘ e TCP/IP
W x|
1 g lH . epoll
: . ‘(libevent]
' @ H . socket
read

paqoeawaw

8 mems$ |
proc E

‘ - lH : TCP/IP

filtering |2

Two-level Tracing (2) - Hardware Monitoring

® Per-node (problematic microservices)
hardware monitoring

o Private cluster: performance counters & ‘A
utilization monitors o0
® 000

m CPU, memory capacity and bandwidth,
network bandW|dth, Cache Contention, gpsmnsasDasaast,

...

storage 1/0 bandwidth uBenc__.h__“
o Public cluster: 10 tunable contentious . Q :
microbenchmarks ot *I:l-l:l-l:l'_l:l-n-l:l-é
m targeting on different shared resources T .flt :

m each takes 10ms to complete

10

DL for Performance Debugging (1)

® Architecture-agnostic

e Adjust to intra-microservice B[®)@ |
: > ° s S ®
changes over time 3 [
. 3 ® & v =W ®
e High accuracy 2 o o °
Q.
® Good scalability g o : s . :
: I = @
e Fastinference (within window of 8 o - v - °
. & ®
opportunity) 9
2 & LSTM sT™M LSTM ®
= oW [ST™ ' softmax

(uo11e|OIA SO 404 Ud) SOIINIRSOIINH#

DL for Performance Debugging (2)

® Input signals:
o container utilization)

o latency X
o queue length \/
e Qutput signal:
o probability that a
microservice will initiate a
QoS violation in the near
future

#Microservices (in dependencies order)

® o
® ° LSTM LSTM. LSTM ®
® 0 uw STM @
® o ®
® @ oV LSTM. @9
o © @
o - M Em p
& LST™ LSTM LSTM ®
CNN [STM ' Softmax

(uo11e|OIA SO 404 Ud) SOIINIRSOIINH#

12

DL for Performance Debugging (3)

® CNN: fast, but cannot predict near

future
e LSTM (RNN): high accuracy, but
affected by noisy, non-critical

microservices

e Hybrid: high accuracy, w/o

significantly higher overhead

O

CNN reduces the dimensionality &
filters out non-critical microservices
LSTM+Softmax infer the probability of
QoS violation

#Microservices (in dependencies order)

A
»

s

- W ©B0 .
LSTM LSTM

® o @

® O sw ST™M ®

® o ®

o o vv Em ®

e © @
LSTM - LSTM

@ ®

o

O LSTM LSTM. LSTM ®

CNN LSTM ' Salonex
56.1 78.79 93.45

QoS Violation Detection Accuracy (%)

(uo1e|oIA SO 104 Ud) SIDIAISSOIDINIH

13

Methodology & Evaluation

® Training once: slow (hours - days)
o across payloads, load distributions, request types
o inject microbenchmarks to force controlled QoS violations -> annotated queue traces
o weight/bias inference and optimization by SGD
® Incremental retraining in background (manually triggered)
© more data: transfer learning-based approach
o application/environment changes in a major way: retrain from scratch
® Inference: continuously streaming traces
o 20-server dedicated heterogeneous cluster (different server configurations)
o 10s of cores, >100GB RAM per server
e 4 end-to-end apps: Social Network, Media Service, E-commerce Site, eBank

o 30-40 unique microservices each

Validation (1)

- 50
® Settin
5 BN 10ms == 500ms
o 100GB trac!ng data (I.eve'ls off afterwards) | 40| B 50ms [1s -
o 100ms tracing sampling interval (no benefit for e B 100msl_] 2s L
more fine-grained sampling) ;; [N
0 L : & 30 AN
e 91% accuracy in signaling upcoming QoS & LN
br— \
. . - 1 —
violations @ 20 : N
\
. . . S
e 88% accuracy in attributing QoS O - | Y
I \
violation to correct microservice R

0 False Negatives False Positives

Prediction of QoS Violations in the
Next 100ms

Validation (2)

® Setting

@)

@)

100GB tracing data (levels off afterwards)
100ms tracing sampling interval (no benefit for
more fine-grained sampling)

® Seer can foresee 91% injected QoS
violations (84/95 early enough to take

action)

@)

(@)
(@)
(@)

Utilization: threshold-based approach

App-only: limited version of Seer (only app queues)
Net-only: limited version of Seer (only net queues)
Ground-truth: injection campaign

% of Valid QoS Violations

I CPU [Network
I Cache I Disk
(|
0
0

Memory B Application

0&\\\1’"\’ PQQO \46\0 o 6‘% SN

Prediction of QoS Violations in the

Next 100ms
16

Avoiding QoS Violations

e Identify cause of QoS violation
o private cluster: performance counters & utilization monitors (threshold-based)
o public cluster: contentious microbenchmarks (check one by one)

e Adjust resource allocation

o CPU/Memory/IO contention: resize containers
o Cache contention: Intel cache allocation technology (CAT) for last level cache (LLC) partitioning
o Network contention: Linux traffic control’s hierarchical token bucket (HTB) queueing discipline in qdisc

for bandwidth partitioning
e Application-level bugs

O human intervention

17

Questions/Discussion

Not considered: logic layer load-balancer, replicated instances for each

individual micro-service
Intensive Instrumentation + Expert knowledge on microservices
o Collecting application & network queue lengths
o Seer doesn’t require domain knowledge about the dependencies (why not?)
DL: predicting incoming workload patterns (randomness is not predictable)
o As expected, Seer doesn’t foresee random violations: network switch failure,
random load spikes, which is usually the case in practice.
Timing Synchronization on Tracing Data

® °® °® -
tl= 12 = t2 -t1°?
App1l sent-out App2 received 18

So Far...

® Microservices become increasingly popular
e Traditional performance debugging techniques do not scale and introduce
long recovery times Seer’s Contribution
® Seer leverages DL to anticipate QoS violations & find their root causes
o 91% detection accuracy, avoids 86% of QoS violations
® [?] Seer provides insights on how to better design and deploy complex

microservices
® [?] Seer provides practical solutions for systems whose scale make previous
empirical solutions impractical

19

Performance Engineering for Cloud Microservices

e Why Cloud Computing?

o Elasticity: dynamically acquire and release resources according to the need;

e [Classical Problem + New Setting] To achieve efficiency, it’s vital to automatically
and timely provision and deprovision the right type and amount of cloud resources
to cater to dynamic workloads without breaking the QoS/SLAs.

e MAPE Loop

Measurements >| Analysis

| |

Execution < Planning

20

MAPE Loop (1)

Seer o e |

v oV prediction of QoS
- ® Performance Indicator : Workload :
~® Monitoring Interval || Measurements |—— Analysis ey Adaptivity to Changes

T l . @ Oscillation Mitigation

~/ __________________________ Execution Planning e
- eV Execute Actions . @ Resource Estimation
o Cloud Providers’ APIs .«POSS|b|e Act|ons
e e e : ° COSt Model

21

MAPE Loop (2) - Single Application

® Resource Estimation (for given workload)

©)
©)
©)
©)

©)

Threshold/Rule-based

Fuzzy Inference

Application Profiling

Analytical Modeling (Queueing Theory)

Machine Learning (CNN, Reinforcement Learning)

e Workload Prediction

©)

Time-series Analysis: linear regression, autoregressive models (AR), moving
average (MA), ARMA, Kalman filter, neural networks

® Other Approaches

©)

Resource Usage Prediction: linear regression, neural networks, ARMA, etc.

22

MAPE Loop (3) - Microservices

e Divide and Conquer ﬂ/\Q/I\J
o break overall SLA into SLA of each service - \—_\/X

o satisfy individual SLAs to meet the overall SLA
o problem: some services serve multiple execution paths & hard to know exact
SLA breakdowns

e Bottom-up Approach
o what-if analysis: each service estimates the change of performance if adding or
removing one instance
O aggregate to choose the operations that optimizes the performance

e Performance Violation Prediction + Per-instance Monitoring (Seer)

23

References

Seer, ASPLOS 2019, http://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.seer.pdf
® uqgSim: Enabling Accurate and Scalable Simulation for Interactive Microservices,

http://www.csl.cornell.edu/~delimitrou/papers/2019.ispass.gsim.pdf

Seer Demo: https://www.youtube.com/watch?v=Mf_C2xCpBdc

Auto-scaling Web Applications in Clouds: https://arxiv.org/abs/1609.09224

A Review of Auto-scaling Techniques for Elastic Applications in Cloud Environments:

https://link.springer.com/content/pdf/10.1007/s10723-014-9314-7.pdf

Thank youl!

24

http://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.seer.pdf
http://www.csl.cornell.edu/~delimitrou/papers/2019.ispass.qsim.pdf
https://www.youtube.com/watch?v=Mf_C2xCpBdc&feature=youtu.be
https://arxiv.org/abs/1609.09224
https://link.springer.com/content/pdf/10.1007/s10723-014-9314-7.pdf

Appendix - Social Networks

Frontend Logic

Read
Post

URL Shorten A’

Unique ID

Frontend

NGINX

\\

Video Store AW Video

Frontend w
N

! User Tag ~—

| =
! Social
fll Recommender Graph

Image Store
W, Image &‘ Timeline

Storage

Load
Balancer

|
|

<.~0
N

a—=d \\rite Home
Timeline

|
|
|
I

,’4“(Read Home L Post &

I

RabbitMQ E} Memcached
=

Caching & Storage

\Ulelgle[eip=1 | User storage

Memcached

L
Index, | Index,

\Ulslgle[eb)=1 | Post storage

e

User timeline
storage

Home timeline
storage

MongoDB Social graph
storage

Memcached | MongoDB [l F=le[¥ (el ¢= 1o !

Memcached i MongoDB | BAY/le [Tl (e lo =]

25

Appendix - Survey on Auto-scaling

Auto-scaling

|

|

Application Session Adantivi Scaling Resource Oscillation Scaling Scaling
Architecture Stickness aptivity Indicators Estimation Mitigation Timing Methods
. . . Low Level Cooling . .
Single Tier — Non-adaptive H Metrics Rule-based [Time Reactive Vertical]—f
- » . High Level Fuzzy Dynamic " 5
Multi-tier |— Non-sticky Self-adaptive H Metrics ‘ Inferece parameters |1 Proactive Horizontal
l L
[1
Self-adaptive " Application : s Pricing
SOA — Switching Hybrid Profiling Exhaustion [| Prediction Cluster Type Model
Analytical Recent H On
Modelling [} Trends omogeneous Demand
Machine Regular
Learning Patterns Heterogeneous Resorved
. External
Hybrid Data Rebated |-

26

