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Outline - Two Parts

|. Seer!: Leveraging Big Data to Navigate the Complexity of
Performance Debugging in Cloud Microservices, ASPLOS ’19, Cornell
SAIL Group

Il. Put Seer Into A Broader Perspective - Performance Engineering for
Cloud Microservices

"Gan, Yu, et al. "Seer: Leveraging big data to navigate the complexity of performance debugging in cloud microservices." Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems. 2019.



From Monolith to Microservices

webserver 2 databases  Webserver
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> All functionality in a single service > Fine-grained, single-concerned,

o makes application evolution loosely-coupled services
cumbersome and error prone o  Modularity, Flexibility, Faster Dev,
o  limits programming languages, tools, Elasticity...
frameworks, etc. o  Stricter QoS & Cascading QoS Violations &

Unpredictable Performance -> A-posteriori
Debugging Impractical



From Monolith to Microservices

> Microservices are getting popular & it’s important to do guarantee “service
level agreement/objectives” for provided services @Amazon, Netflix

=> Seer’s Goal: proactive performance debugging for interactive microservices
o to anticipate & localize QoS violations (accuracy & completeness)
O to provide insights to improve microservices design and deployment

Netflix Twitter Amzon



Perf-Debugging Challenges for Microservices (1)

e Complicated cluster
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Demo: http://www.csl.cornell.edu/~delimitrou/2019.asplos.seer.demo motivation.mp4



http://www.csl.cornell.edu/~delimitrou/2019.asplos.seer.demo_motivation.mp4

Perf-Debugging Challenges for Microservices (2)

e Empirical performance
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Perf-Debugging Challenges for Microservices (3)

e Hard to guarantee predictable
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Seer Overview

e Uses ML to identify the root
|
cause of an upcoming QoS
violation: Es e ot
o massive amount of distributed

traces collected over time
o uses targeted per-server

el
e

hardware probes to determine
the cause of the QoS violation

e Informs admin to take proactive action & prevent QoS violation
o needs to predict 100s of msec -> a few sec in the future (not yet met)



Two-level Tracing (1)

e Distributed RPC-level tracing
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similar to Dapper, Zipkin, based on Apache
Thrift timing interface
collects

m per-microservice latencies

m inter- and intra-microservice queue

lengths

overhead: <0.15% in QPS, <0.1% in latency
traces are associated and aggregated in a
Cassandra database

® Fine-grained instrumentation
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distinguish network processing and
application computation
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Two-level Tracing (2) - Hardware Monitoring

® Per-node (problematic microservices)
hardware monitoring

o Private cluster: performance counters & ‘A
utilization monitors o0
® 000

m CPU, memory capacity and bandwidth,
network bandW|dth, Cache Contention, gpsmnsasDasaast,

.............................................................

storage 1/0 bandwidth uBenc__.h__“
o Public cluster: 10 tunable contentious . Q :
microbenchmarks ot *I:l-l:l-l:l'_l:l-n-l:l-é
m targeting on different shared resources T .flt :

m each takes 10ms to complete
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DL for Performance Debugging (1)

® Architecture-agnostic

e Adjust to intra-microservice B[ ® )@ |
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DL for Performance Debugging (2)

® Input signals:
o container utilization )

o latency X
o queue length \/
e Qutput signal:
o probability that a
microservice will initiate a
QoS violation in the near
future

#Microservices (in dependencies order)
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DL for Performance Debugging (3)

® CNN: fast, but cannot predict near

future
e LSTM (RNN): high accuracy, but
affected by noisy, non-critical

microservices

e Hybrid: high accuracy, w/o

significantly higher overhead

O

CNN reduces the dimensionality &
filters out non-critical microservices
LSTM+Softmax infer the probability of
QoS violation

#Microservices (in dependencies order)
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Methodology & Evaluation

® Training once: slow (hours - days)
o across payloads, load distributions, request types
o inject microbenchmarks to force controlled QoS violations -> annotated queue traces
o  weight/bias inference and optimization by SGD
® Incremental retraining in background (manually triggered)
© more data: transfer learning-based approach
o application/environment changes in a major way: retrain from scratch
® Inference: continuously streaming traces
o  20-server dedicated heterogeneous cluster (different server configurations)
o  10s of cores, >100GB RAM per server
e 4 end-to-end apps: Social Network, Media Service, E-commerce Site, eBank

o  30-40 unique microservices each



Validation (1)
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Validation (2)

® Setting

@)

@)

100GB tracing data (levels off afterwards)
100ms tracing sampling interval (no benefit for
more fine-grained sampling)

® Seer can foresee 91% injected QoS
violations (84/95 early enough to take

action)

@)

(@)
(@)
(@)

Utilization: threshold-based approach

App-only: limited version of Seer (only app queues)
Net-only: limited version of Seer (only net queues)
Ground-truth: injection campaign

% of Valid QoS Violations

I CPU [ Network
I Cache I Disk
(|
0
0

Memory B Application

0&\\\1’"\’ PQQO \46\0 o 6‘% SN

Prediction of QoS Violations in the

Next 100ms
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Avoiding QoS Violations

e Identify cause of QoS violation
o  private cluster: performance counters & utilization monitors (threshold-based)
o  public cluster: contentious microbenchmarks (check one by one)

e Adjust resource allocation

o CPU/Memory/IO contention: resize containers
o Cache contention: Intel cache allocation technology (CAT) for last level cache (LLC) partitioning
o  Network contention: Linux traffic control’s hierarchical token bucket (HTB) queueing discipline in qdisc

for bandwidth partitioning
e Application-level bugs

O  human intervention

17



Questions/Discussion

Not considered: logic layer load-balancer, replicated instances for each

individual micro-service
Intensive Instrumentation + Expert knowledge on microservices
o Collecting application & network queue lengths
o Seer doesn’t require domain knowledge about the dependencies (why not?)
DL: predicting incoming workload patterns (randomness is not predictable)
o As expected, Seer doesn’t foresee random violations: network switch failure,
random load spikes, which is usually the case in practice.
Timing Synchronization on Tracing Data

® °® °® -
tl= 12 = t2 -t1°?
App1l sent-out App2 received 18




So Far...

® Microservices become increasingly popular
e Traditional performance debugging techniques do not scale and introduce
long recovery times Seer’s Contribution
® Seer leverages DL to anticipate QoS violations & find their root causes
o 91% detection accuracy, avoids 86% of QoS violations
® [?] Seer provides insights on how to better design and deploy complex

microservices
® [?] Seer provides practical solutions for systems whose scale make previous
empirical solutions impractical
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Performance Engineering for Cloud Microservices

e Why Cloud Computing?

o Elasticity: dynamically acquire and release resources according to the need;

e [Classical Problem + New Setting] To achieve efficiency, it’s vital to automatically
and timely provision and deprovision the right type and amount of cloud resources
to cater to dynamic workloads without breaking the QoS/SLAs.

e MAPE Loop

Measurements >| Analysis

| |

Execution < Planning

20



MAPE Loop (1)

Seer o e |

v oV prediction of QoS
- ® Performance Indicator : Workload :
~® Monitoring Interval || Measurements |—— Analysis ey Adaptivity to Changes

T l . @ Oscillation Mitigation

~/ __________________________ Execution Planning e
- eV Execute Actions . @ Resource Estimation
o Cloud Providers’ APIs .«POSS|b|e Act|ons
e e e : ° COSt Model
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MAPE Loop (2) - Single Application

® Resource Estimation (for given workload)

©)
©)
©)
©)

©)

Threshold/Rule-based

Fuzzy Inference

Application Profiling

Analytical Modeling (Queueing Theory)

Machine Learning (CNN, Reinforcement Learning)

e Workload Prediction

©)

Time-series Analysis: linear regression, autoregressive models (AR), moving
average (MA), ARMA, Kalman filter, neural networks

® Other Approaches

©)

Resource Usage Prediction: linear regression, neural networks, ARMA, etc.
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MAPE Loop (3) - Microservices

e Divide and Conquer ﬂ/\Q/I\J
o break overall SLA into SLA of each service - \—_\/X

o satisfy individual SLAs to meet the overall SLA
o problem: some services serve multiple execution paths & hard to know exact
SLA breakdowns

e Bottom-up Approach
o what-if analysis: each service estimates the change of performance if adding or
removing one instance
O aggregate to choose the operations that optimizes the performance

e Performance Violation Prediction + Per-instance Monitoring (Seer)
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Thank youl!
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Appendix - Social Networks

Frontend Logic
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Appendix - Survey on Auto-scaling

Auto-scaling
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