
Fuzzing
Saurabh Jha

Disclaimer

• Many slides borrowed and in some-cases replicated from
• Abhik Roychoudhury’s lecture in ISSISP Summer School 2018

• AFL tutorials

• My own slides presented elsewhere

Outline

• Basics of Fuzzing

• Coverage-based Greybox Fuzzing as Markov Chain

• Fuzzing for Autonomous (AI-driven) Systems

Basics of Fuzzing

Def. Fuzzing

• [Input] random, no model enforced of program behavior, system, etc.

• [Reliability] application crashes or hangs

• [Automation] input generation, result checker, methodology
independent of program, compiler, OS

[Source] B. Miller, http://pages.cs.wisc.edu/~bart/fuzz/

http://pages.cs.wisc.edu/~bart/fuzz/

Why is it important?

• Identifies bugs in application design and/or implementation

• Trustworthy applications
• Reliability of the application

• Users may experience hang or crash (think about hangs of your favorite app)
• Security of the application

• Hackers can exploit the bug to steal information (e.g., Heartbleed) or (physically) harm
users (e.g., causing accidents for autonomous vehicles)

• Exciting future: New application domains for fuzzing, Automatic
identification and repairs

Testing: Black, White, and Gray

First Fuzzer: Study of Reliability of Unix Utilities,
Miller et al.

“While our testing strategy sounds naïve, its ability
to discover fatal program bugs is impressive”

Industry standard for testing

Random Input Generation

• Mutation-based

• Generation-based

Mutation

• Inputs
• Program P
• Seed input x0
• Mutation ratio 0<m ≤1

• Next step
• Obtain an input x1 by randomly flipping m*|x0| bits
• Run x1 and check if P crashes or terminates properly
• In either case document the outcome, and generate next input

• End of fuzz campaign
• When time bound is reached, or N inputs are explored for some N
• Always make sure that bit flipping does not run same input twice.

Why depend on mutations?

• Many programs take in structured inputs
• PDF Reader, library for manipulating TIFF, PNG images
• Compilers which take in programs as input
• Web-browsers, ...

• Generating a completely random input will likely crash the application
with little insight gained about the underlying vulnerability

• Instead take a legal well-formed PDF file and mutate it!

Why depend on mutations?

• Principle of mutation fuzzing
• Take a well-formed input which does not crash.
• Minimally modify or mutate it to generate a “slightly abnormal” input
• See if the “slightly abnormal” input crashes.

• Salient features
• Does not depend on program at all [nature of BB fuzzing]
• Does not even depend on input structure.
• Yet can leverage complex input structure by starting with a well-formed seed

and minimally modifying it.

Generation Based Fuzzing

• Test cases are generated from some description of the format: RFC,
documentation, etc.
• Anomalies are added to each possible spot in the inputs
• Knowledge of protocol should give better results than
• random fuzzing
• Can take significant time to set up
• E.g., SPIKE,Sulley,Mu-4000, Codenomicon,

Peach Fuzzer

White-box Fuzzing

Code Coverage

• Some of the answers to our problems are found in code coverage
• To determine how well your code was tested, code coverage can give

you a metric.
• But it’s not perfect (is anything?)
• Code coverage types:

• Statement coverage – which statements have been executed •
Branch coverage – which branches have been taken
• Path coverage – which paths were taken.

Coverage-based Gray box Fuzzing as Markov
Chain

Intro to American Fuzzy Lop (AFL)

• AFL (http://lcamtuf.coredump.cx/afl/) by Michal Zalewski

• afl-fuzz -i test-cases -o findings -m none -- ./indent @@

Intro to American Fuzzy Lop (AFL)

Grey-box Fuzzing, as in AFL

AFL Overview

Core intuition

• AFL’s power schedule is constant in the number of times s(i) the seed
has been chosen for fuzzing

• AFL’s power schedule always assigns high energy

Prioritize low probability paths

Power Schedules

Results

Impact

• Implemented inside AFL (version 2.33b, FidgetyAFL), and distributed
approximately within one year of publication

Autonomous (AI-driven) Systems

Suite of AI-driven Systems

Resilience of Autonomous Vehicles

Research Gap: Methods to assess end-to-end resilience, security & safety of AVs not available

https://youtu.be/2WjMcUhsMA
M

https://youtu.be/jYkO7L
QC2jE

https://youtu.be/2WjMcUhsMAM
https://youtu.be/jYkO7LQC2jE

Challenges and Opportunities
• Many of the functions/modules are ML algorithms consisting of back-to-back

matrix multiplication
• Coverage metric such as branch, statement, etc. do not make sense or have limited use

• Beyond hangs and crashes, the safety property includes collision, traffic rules etc.

• [Spatial resiliency] ML algorithms are inherently tolerant towards noise, and not
all (random) inputs are useful

• [Temporal resilience] Physical state of such systems change over horizon of time,
and ML algorithms can correct (compensate for) bad inputs/actions at time T in
the next time-step T+1

Field Failure Analysis: Examining the Current
State of AVs [DSN 2018]

Disengagements Accidents

Human
Initiated

AV
Initiated

1 2

1,116,605 miles – 144 AVs – 12 Vendors
Data driven analysis of failures in
the field during testing of AVs

California Department of Motor Vehicles
AV Testing Reports (2014 – 2016)

5328 Disengagements – 42 Accidents

Failure Modes
Disengagement: A transfer of control from the
autonomous system to the human driver in the
case of a failure.

Accident: An collision with other vehicles,
pedestrians, or property.

Quantified in terms of disengagements per mile
(DPM) and accident per mile (APM).

Field Failure Analysis: Examining the Current
State of AVs [DSN 2018]

Disengagements Accidents

Human
Initiated

AV
Initiated

1 2Failure Modes
Disengagement: A transfer of control from the
autonomous system to the human driver in the
case of a failure.

Accident: An collision with other vehicles,
pedestrians, or property.

Quantified in terms of disengagements per mile (DPM) and accident per mile (APM).

Current AV tech in burn-in phase

Comparing to Humans

• AVs are merely 4.22x
worse than airplanes,

• 2.5x better than surgical
robots

• ML/Design issues account for 65% of failures
• 48% of disengagements are human initiated
• Volkswagen reported ~20% disengagements

due to software hang/crashes

• Non-AVs are 15 − 4000× less likely to
have an accident

• All accidents reported at intersection of
urban streets

Compared to other systems

Results

End-to-end Resilience and Safety Evaluation

Hardware Platform (CPUs, GPUs)

Data

Scenario Manager Campaign Manager

Event-Driven Sync. Module

Injection Plan Generator
Bayesian (PGM)

Docker

Monitors &
Safety Evals

UnrealEngine
(SIM)

AI
Engine

Monitors
& Logging Random

Mode Selection
Feedback
& control

GPU FI SLIML Data SW HW

AV Simulator View
• Unreal Engine or

Unity-based
• Provides sensor

data to AI-agent

AI-agent View
• Apollo (AI-agent)

actions
• Provides actuation

commands

Example Accidents

Faulty Input (bit-flip model)

