Fuzzing

Saurabh Jha

Disclaimer

* Many slides borrowed and in some-cases replicated from
* Abhik Roychoudhury’s lecture in ISSISP Summer School 2018

e AFL tutorials

* My own slides presented elsewhere

Outline

* Basics of Fuzzing

* Coverage-based Greybox Fuzzing as Markov Chain

* Fuzzing for Autonomous (Al-driven) Systems

Basics of Fuzzing

Def. Fuzzing

* [Input] random, no model enforced of program behavior, system, etc.
* [Reliability] application crashes or hangs

* [Automation] input generation, result checker, methodology
independent of program, compiler, OS

[Source] B. Miller, http://pages.cs.wisc.edu/~bart/fuzz/

http://pages.cs.wisc.edu/~bart/fuzz/

Why is it important?
* |dentifies bugs in application design and/or implementation

* Trustworthy applications
* Reliability of the application
* Users may experience hang or crash (think about hangs of your favorite app)

* Security of the application

* Hackers can exploit the bug to steal information (e.g., Heartbleed) or (physically) harm
users (e.g., causing accidents for autonomous vehicles)

* Exciting future: New application domains for fuzzing, Automatic
identification and repairs

Testing: Black, White, and Gray

f Expected BLACK-BO)A

R Results

. - l
Requirements © e
Plan Test
Outputs
Case
Fail

N

/~ WHITE-BOX E——

Results

»
>

Test l Pass
Plan | Test %S:i. Outputs > <><
Case
— Fail
K ‘ Stop?

-1rst
Mille

et al.

-uzzer: Study of Reliability of Unix Utilities,

“While our testing strategy sounds naive, its ability
to discover fatal program bugs is impressive”

utilty

TABLE I

| xw

sun (s)

as

cat

FIGURE 1. Output of Fuzz Piped to a e

Utility. fib/ccom |

cC

checkeq
checknr
col

alb 1

M AAEEScl .

g
calendar |

®0

Industry standard for testing

=" Microsoft

Springfield Project - Fuzzing as a service

Google

OSS-Fuzz - Continuous fuzzing for open-source projects

Random Input Generation

e Mutation-based

 Generation-based

/ Expected BLACK-BO)A

Results

l Pass
Outputs > <><
Fail

Test
Plan Test

Requirements [—

N

Mutation

* Inputs
* Program P
e Seed input x0
* Mutation ratio O<m <1

* Next step
e Obtain an input x1 by randomly flipping m*|x0]| bits
* Run x1 and check if P crashes or terminates properly
* |In either case document the outcome, and generate next input

* End of fuzz campaign
* When time bound is reached, or N inputs are explored for some N
* Always make sure that bit flipping does not run same input twice.

Why depend on mutations?

* Many programs take in structured inputs
* PDF Reader, library for manipulating TIFF, PNG images
* Compilers which take in programs as input
 Web-browsers, ...

* Generating a completely random input will likely crash the application
with little insight gained about the underlying vulnerability

* Instead take a legal well-formed PDF file and mutate it!

Why depend on mutations?

* Principle of mutation fuzzing
* Take a well-formed input which does not crash.
* Minimally modify or mutate it to generate a “slightly abnormal” input
* See if the “slightly abnormal” input crashes.

 Salient features
* Does not depend on program at all [nature of BB fuzzing]
* Does not even depend on input structure.

* Yet can leverage complex input structure by starting with a well-formed seed
and minimally modifying it.

Generation Based Fuzzing

 Test cases are generated from some description of the format: RFC,
documentation, etc.

* Anomalies are added to each possible spot in the inputs
* Knowledge of protocol should give better results than

* random fuzzing

* Can take significant time to set up

* E.g., SPIKE,Sulley,Mu-4000, Codenomicon,
Peach Fuzzer

Mutation vs Generation
I R I

Mutation- Super easy to Little to no Limited by May fail for
based setup and protocol initial corpus protocols with
automate knowledge checksums, or
required other
‘:? E? == complexity ==
Generation- Writing have to have Completeness Can deal with
based generator is spec of complex
labor intensive protocol checksums
for complex (frequently and
protocols not a problem dependencies
for common

ones http,
snmp, etc...)" :F ‘%

White-box Fuzzing

Cover more paths \

XSyax+y<10

XSyA—=x+y<10

— X<y
Directed D
Automated A
returnb Random R

\ Testing T /

Code Coverage

* Some of the answers to our problems are found in code coverage

* To determine how well your code was tested, code coverage can give
you a metric.

* But it’s not perfect (is anything?)

* Code coverage types:
e Statement coverage — which statements have been executed e

Branch coverage — which branches have been taken
e Path coverage — which paths were taken.

Coverage-based Gray box Fuzzing as Markov
Chain

Intro to American Fuzzy Lop (AFL)

e AFL (http://lcamtuf.coredump.cx/afl/) by Michal Zalewski

o afl-fuzz -i test-cases -o findings -m none -- ./indent @@

om0 01O - 1
! | —

CICI IR [—'l—iﬁlﬁ":"ll_l’ﬁ""'?l_l':‘ﬁ[_lf_"_"ﬁﬁ
EEEREEEE - AnEEEnEENEEE

el o -

It finds bugs

1JG jpeg L libjpeg-turbo 1 2 libpng 1 libtiff £ 23 2 5 mozjpeg L I'bbf’F (1
Mozilla Firefox 12245 Google Chrome L Internet Explorer 12) 4)
lereOfflce 1234 poppler 1 freetype 12 GnuTLS L GnuPG 120

exufprobe capnproto 1

Intro to American Fuzzy Lop (AFL)

american fuzzy lop 1.56b (bmp2tiff)

GEVES

) days, @

) days, O
l

Grey-box Fuzzing, as in AFL

:
| =

Test suite

Mutated files

L
@k

Input Queue

Dequeue — ‘F\ ‘ Enqueue

Space of Techniques

Search Symbolic Execution

- Random - Dynamic Symbolic execution

. Biased-random - Concolic Execution

. Genetic (AFL Fuzzer) - Cluster paths based on symbolic

expressions of variables

- Low set-up overhead - High set-up overhead
- Fast, less accurate - Slow, more accurate
- Use objective function to steer - Use logical formula to steer

-

AFL Overview

* Input: Seed Inputs S

e 1:Tx=2

e 2:T=S

* 3:if T =2 then

> 4: add empty file to T

* 5:endif

* 6: repeat

e T: t = chooseNext(T)

. 8 p = assignEnergy(t)

« O for 1 from 1 to p do

* 10: t0 = mutate_input(t)

e 11: if t0 crashes then

e 12: add t0 to T x Exercises common o _
C1% elseifisTnteresting(0) then painhai o Shepate decng sactaly
e 14: add tO to T too frequently

« 15: end if

* 16: end for
* 17: until timeout reached or abort-signal
e Output: Crashing Inputs T x

Core Intultion

* AFLl's power schedule is constant in the number of times s(i) the seed
has been chosen for fuzzing

* AFLl’s power schedule always assigns high energy

! Exercises a
- 1' high-frequency
i path (rej. inv. PDF)

= et '
Valid PDF \’ L L

Prioritize low probability paths

v' Use grey-box fuzzer which keeps track of path id for a test.

v" Find probabilities that fuzzing a test t which exercises 1 leads to an
input which exercises 1r

O O

v' Higher weightage to low probability paths discovered, to gravitate
to those -> discover new paths with minimal effort.

4)

void crashme (char* s) {
if (s[0] =="b’)
if (s[1] == ")
if (s[2] ="d)
if (s[3] =="")
abort ();

1
2

3

4

5

6

T}

N\ /

Power Schedules

= Constant: p) = a@)
®» AFL uses this schedule (fuzzing ~1 minute)
® o(1) .. how AFL judges fuzzing time for the test exercising path 1

» Cut-off Exponential:

G)(i) =0, if fQ)>p - -
_min((a(1)/B)*25®, M) otherwi

P, rea-vim

B is a constant
s(1) #times the input exercising path 1 has been chosen for fuzzing

f(1) #fuzz exercising path 1 (path-frequency)
1 mean #fuzz exercising a discovered path (avg. path-frequency)
M maximum energy expendable on a state

Results

» 10°- 0 10°-
o % Q AFL-FAST
S 10t 8 10'-
= mean = 1283 ®
wn Jomm mm e o mm mm mm mm mm mm Em Em mm Em Em A Em Em R 3
2 10 2 10 =
u— ‘S 2
O 107+ ;10
o
O
-g 101_ E 101_
=] =
Z 10°- ———— < 10°4
1 1
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 0 50 100 150 200 250 300 350 400 450 500

Path Index Path Index

Independent evaluation found crashes 19x faster on
DARPA Cyber Grand Challenge (CGC) binaries

Integrated into main-line of AFL fuzzer within a year of publication (CCS16),
which is used on a daily basis by corporations for finding vulnerabilities

Impact

* Implemented inside AFL (version 2.33b, FidgetyAFL), and distributed
approximately within one year of publication

Autonomous (Al-driven) Systems

Suite of Al-driven Systems

Resilience of Autonomous Vehicles

m‘

123U NE2nis=——

DASHCAM FOOTAGE

https://youtu.be/2W
M

https://youtu.be/jYkO7L

Q_ Search

Bloomberg

Hyperdrive

Tesla Driver Died Using Autopilot, With
Hands Off Steering Wheel

QC2jE

Ehe New Pork Eimes

Self-Driving Uber Car Kills Pedestrian

in Arizona, Where Robots Roam

Sum . WAYMO'S SELE-DRIVING (AR
g CRASILIN ARIZONA REVIVES
o TOUGIQUESTIONS

Research Gap: Methods to assess end-to-end resilience, security & safety of AVs not available

https://youtu.be/2WjMcUhsMAM
https://youtu.be/jYkO7LQC2jE

Challenges and Opportunities

* Many of the functions/modules are ML algorithms consisting of back-to-back
matrix multiplication
* Coverage metric such as branch, statement, etc. do not make sense or have limited use

* Beyond hangs and crashes, the safety property includes collision, traffic rules etc.

 [Spatial resiliency] ML algorithms are inherently tolerant towards noise, and not
all (random) inputs are useful

* [Temporal resilience] Physical state of such systems change over horizon of time,
and ML algorithms can correct (compensate for) bad inputs/actions at time T in
the next time-step T+1

Field Failure Analysis: Examining the Current
State of AVs [psn 2018]

California Department of Motor Vehicles
Data driven analysis of failures in AV Testing Reports (2014 — 2016)

AR U I SRS TR O (AL 1,116,605 miles — 144 AVs — 12 Vendors
5328 Disengagements — 42 Accidents

@ Disengagements Failure Modes @ Accidents
Disengagement: A transfer of control from the <3
Human autonomous system to the human driver in the S N
Initiated case of a failure. — i
s S i
Accident: An collision with other vehicles, —
AV pedestrians, or property.
Initiated

Quantified in terms of disengagements per mile
(DPM) and accident per mile (APM).

TAKING || DRIVERLESS UBER CAR INVOLVED IN CRASH IN TEMPE
ooooooooooooooooooooooooooo

ARIZONA

Field Failure Analysis: Examining the Current
m State of AVs [DSN 2018]
Current AV tech in burn-in phase

Current AV tech in burn-in phase

* ML/Design issues account for 65% of failures

e 48% of disengagements are human initiated

* Volkswagen reported ~20% disengagements
due to software hang/crashes

Comparing to Humans

* Non-AVs are 15 - 4000x less likely to
have an accident

e All accidents reported at intersection of

urban streets
Compared to other systems

 AVs are merely 4.22x
worse than airplanes,

e 2.5x better than surgical
robots

End-to-end Resilience and Safety Evaluation

Activities] Terminal v

Mon 14:36

about:sessionrestore X

Dreamview - Mozilla Firefox
) Pocket - Save news, vid

B = oreamuiew

localhost:8080/#/simul- X | +
P © | ® localhost
‘ ° | Docker Version Co-Driver Mkz Standard Debug

19

n Accelerator

52.,

NO SIGNAL
enes v x [T

"o«

[Borregas A

sJhaB@autocloud: ~/projects/baldu/apollo-5.0/scripts
ile Edit View Search Terminal Tabs Help
. sjhas@autoclou... x | sjhag@in_dev_d.. x | sjhas@autoclou... x A -
nq --enable-1ibzvbi --enable-omx --enable-openal --enable-opengl --enable-sdl2 -
-enable-1ibdc1394 --enable-libdrn --enable-1ibiec61883 --enable-chromaprint
“able-frei@r --enable-libopencv --enable-lil 64 enable-shared
libavutil 55. 78.100 . 78.10¢
‘100 7 57.107.
100 8
> 10!

Llibavcodec
libavformat
e

5
Libavresanple
Libswscale
Libswresanple
Libpostproc
1
poten

R - -o-.-. - T
g =

Activities 5] Terminal +

Mon 14:37

about:sessionrestore #) Pocket - Save news, vid:

Faulty Input (bit-flip model)

Dreamview - Moilla Firefox

Bl & oreamview localhost:8080/#/simul- X | +

© 0o~

Docker Version | Co-Driver Mute Mkz Standard Debug

Lincoln2017MKZ

NO SIGNAL

sjhas@autacloud: ~/projects/baidu/apollo-5.0/scripts
File Edit View Search Terminal Tabs Help
sjhas@autoclou... x | sjhas@in_dev d... x | sjhas@autoclou... x | sihas@avtoclou... ~ [FaNEg
1 --enable-omx --enable-openal --enable-opengl --enable-sdl2 -
nable-1ibiec61883 --enable-chromaprint --en

nable-11bx264 --enable-share

Libswscale
Libswresanple
Libpostproc

