
A Linux in Unikernel Clothing
Hsuan-Chi Kuo

University of Illinois at Urbana-Champaign
hckuo2@illinois.edu

Dan Williams
IBM T.J. Watson Research Center

djwillia@us.ibm.com

Ricardo Koller
IBM T.J. Watson Research Center

kollerr@us.ibm.com

Sibin Mohan
University of Illinois at Urbana-Champaign

sibin@illinois.edu

Abstract
Unikernels leverage library OS architectures to run isolated
workloads on the cloud. They have garnered attention in
part due to their promised performance characteristics such
as small image size, fast boot time, low memory footprint
and application performance. However, those that aimed at
generality fall short of the application compatibility, robust-
ness and, more importantly, community that is available for
Linux. In this paper, we describe and evaluate Lupine Linux,
a standard Linux system that—through kernel configuration
specialization and system call overhead elimination—achieves
unikernel-like performance, in fact outperforming at least
one reference unikernel in all of the above dimensions. At
the same time, Lupine can run any application (since it is
Linux) when faced with more general workloads, whereas
many unikernels simply crash. We demonstrate a graceful
degradation of unikernel-like performance properties.

1 Introduction
Since the inception of cloud computing, the virtual machine
(VM) abstraction has dominated infrastructure-as-a-service
systems. However, it has recently been challenged, as both
users and cloud providers seek more lightweight offerings.
For example, alternatives such as OS-level containers have
begun to attract attention due (in part) to their relatively
lightweight characteristics in dimensions such as image size,
boot time, memory footprint and overall performance.

In response, the virtualization stack has been evolving to
become more lightweight in two main ways. First, modern
virtual machine monitor designs, like lightVM [43] and AWS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’20, April 27–30, 2020, Heraklion, Greece
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6882-7/20/04. . . $15.00
https://doi.org/10.1145/3342195.3387526

Unikernel-like techniques

Specialization
via Kconfig

System Call
Overhead

Elimination
via KML

Linux source

Lupine Linux
“Unikernel”

Application manifest

Application (container) App rootfs

Figure 1. Overview

Firecracker [4] (or in a more extreme case unikernel mon-
itors [63]), have reduced the complexity and improved the
performance of the monitor. Second, alternatives to large,
general-purpose guest operating systems have begun to
emerge—whether it is a change in the userspace (e.g., from
Ubuntu-based to Alpine-based), a change in the configura-
tion of the guest kernel (e.g., TinyX [43]) or in the case of
unikernels [41], a specialized library OS.
Specializing the guest VM to the extent of running a li-

brary OS tailored to an application is a compelling prospect,
especially when the application domain is limited. Language-
based unikernels, such asMirageOS [41] (in which the library
OS and application are entirely written in OCaml), have
demonstrated a combination of security and lightweight
properties. In an effort to expand the applicability of uniker-
nel ideas, however, several unikernel/library OS projects,
including HermiTux [45], Rumprun [15], Graphene [62] and
OSv [32], have attempted to becomemore general and POSIX-
like; some even going so far as claiming Linux binary compat-
ibility [45]. Approaching some level of POSIX-like generality
typically requires either a great implementation effort or a
clever way to reuse existing POSIX-compatible kernel im-
plementations (usually NetBSD [15, 32]). However, these
approaches still fall short of true compatibility because of
arbitrary restrictions (e.g., not supporting fork) and suffer
by being unable to leverage the robustness, performance or,
most importantly, the community of Linux.
In this paper, we make the observation that Linux is al-

ready highly configurable and seek to determine exactly how
close it is to achieving the sought-after properties of uniker-
nels. We describe Lupine Linux (Figure 1), in which we apply

1

https://doi.org/10.1145/3342195.3387526

two well-known unikernel-like techniques to Linux: special-
ization and the elimination of system call overhead. Though
we do not propose a general solution for specialization, we
specialize Lupine through the kernel’s Kconfig mechanisms
by (1) eliminating functionality from the kernel that is not
necessary for the unikernel domain (e.g., support for hard-
ware devices or multiprocessing) and (2) tailoring the kernel
as much as possible to the particular application. Lupine
eliminates system call overhead by running the application
in the same privilege domain as the kernel via the existing
(but not upstream) Kernel Mode Linux (KML) [42] patch.

When evaluating Lupine against a state-of-the-art light-
weight VM (AWS Firecracker’s microVM) and three POSIX-
like unikernels, we find that Lupine outperforms microVM
and at least one of the reference unikernels in all of the fol-
lowing dimensions: image size (4 MB), boot time (23 ms),
memory footprint (21 MB), system call latency (20 𝜇s), and
application performance (up to 33% higher throughput than
microVM). While both unikernel techniques played a role in
improving performance, specialization had the largest effect:
despite up to 40% reduction in system call latency due to
KML onmicrobenchmarks, we found it improved application
performance on macrobenchmarks by only 4%.

Regarding specialization via configuration, we attempted
to determine the most practical degree of specialization for
Lupine. To this end, we examined the effects of specialization
in Lupine by heuristically creating specialized configurations
for the top 20 cloud applications—that account for 83% of
all downloads—as determined by popularity on Docker Hub.
We categorize 550 configuration options from the microVM
kernel and find only 19 of them are required to run all 20
applications, suggesting a tiny, application-agnostic kernel
configuration that achieves unikernel-like performance with-
out the complications of per-application specialization.
Lupine exploits Linux to eliminate the generality issues

of other POSIX-like unikernels; it can run any application
using Linux’s highly-optimized implementation, including
those that do not fit in the unikernel domain. In this context,
we examine how unikernel properties degrade in the face of
generality and find a graceful degradation property. Where
other unikernels may crash on fork, Lupine continues to
run. Moreover, we find virtually no overhead for support-
ing multiple address spaces and at worst an 8% overhead to
support multiple processors, concluding that many uniker-
nel restrictions are avoided unnecessarily for POSIX-like
unikernels.

This paper makes the following contributions:

• Lupine Linux, an example of configuring and building
a unikernel-like Linux through kernel configuration
specialization and system call overhead elimination,

• an evaluation and comparison of the unikernel prop-
erties that can be achieved with Lupine Linux and

• an investigation into how unikernel performance char-
acteristics degrade (or not) in the face of more general
workloads and hardware in Lupine.

2 Unikernels
Unikernels [6, 13–15, 19, 32, 41, 44, 45, 57] have garnered
widespread interest by providing a lightweight, simple, se-
cure and high-performance alternative to the complex, con-
ventional, general-purpose compute stacks that have evolved
over many years. In this section, we give a brief background
and classification of unikernel projects and their benefits,
describing some of the techniques that they have used to
achieve these benefits and identify some common limita-
tions.

2.1 Background
Unikernels are the most recent incarnation of library OS [26,
46, 53, 62] designs. They are typically associated with cloud
environments and consist of a single application linked with
a library that provides enough functionality to run directly
on a virtual-hardware-like interface. We organize unikernels
into two categories: language-based and POSIX-like.

Language-based. Language-based unikernels are library
OS environments that are tied to a specific programming lan-
guage runtime and libraries, for example, MirageOS [41]
for OCaml, IncludeOS [19] for C++, Clive [13] for Go,
HalVM [57] for Haskell, runtime.js [14] for JavaScript,
Ling [6] for Erlang, and ClickOS [44] for Click router
rules [33]. Language-based unikernels typically do not need
to implement or adhere to POSIX functionality, which can
lead to small images, suitability for compiler-based analyses
and optimizations, and reliability or security from the use
of language features. For example, 39 out of 40 of all bugs
found in Linux drivers in 2017 were due to memory safety
issues [25] that could have been avoided by a high-level lan-
guage. However, the requirement for applications to adhere
to a particular language and interface limits adoption.

POSIX-like. POSIX-like unikernels are library OS environ-
ments that use a single address space and a single privilege
level but attempt to provide some amount of compatibility
with existing applications. OSv [32] and HermiTux [45] are
two unikernels that boast binary compatibility with Linux ap-
plications but reimplement kernel functionality from scratch,
losing the opportunity to benefit from the maturity, stabil-
ity, performance and community of Linux. Unlike language-
based unikernels and Rumprun [15], a POSIX-like unikernel
that leverages NetBSD to avoid reimplementation, OSv and
HermiTux do not require the application to be linked with

2

the library OS which (mostly) eliminates the need to mod-
ify application builds1 and eases deployment at the cost of
losing specialization opportunities.

2.2 Benefits and Techniques
Unikernels achieve benefits like low boot times, security,
isolation, small image sizes, low memory footprint and per-
formance through a combination of optimizing the moni-
tor [43, 63] and construction of the unikernel itself.2

Lightweight monitors. Traditional virtual machine moni-
tors like QEMU are general and complex, with 1.8 million
lines of C code and the ability to emulate devices and even dif-
ferent CPU architectures. Recently, unikernel monitors [63]
have shown that a unikernel’s reduced requirement for faith-
ful hardware emulation can result in a dramatically simpler,
more isolated and higher performing monitor (which may
not even require virtualization hardware [64]). As a result,
unikernels have been shown to boot in as little as 5-10 ms, as
opposed to hundreds of milliseconds for containers or min-
utes for VMs [34, 63], which is important for new compute
models like serverless computing [1, 5]. At the same time,
general-purposemonitors have also been reducing generality
(such as forgoing some device emulation) for performance:
for example, AWS Firecracker [4] and LightVM [43] optimize
for boot time by eliminating PCI enumeration. Firecracker
also improves the security posture of monitors by using a
memory-safe language (Rust).

Specialization. Unikernels embody a minimalist philoso-
phy, where they only require those code modules that are
needed for a particular application to run on virtual hardware.
This leads to smaller image sizes, lower memory footprint,
and smaller attack surfaces. In language-based unikernels,
like MirageOS, the relatively tight integration between the
language, package manager and build process implements
this philosophy well. POSIX-like unikernels, like Rumprun,
OSv or HermiTux, balance how much they specialize with
compatibility and reuse of legacy code, but typically attempt
to provide at least coarse-grained specialization.

System Call Overhead Elimination. Unikernels contain,
by definition, a single application. Therefore, logically, the
library OS and the application exist in the same security and
availability domain. As a result, unikernels typically run all
code in the same CPU privilege domain and in the same
address space in order to improve performance over tradi-
tional systems. There is no need to switch context between
application and kernel functions.

1These systems typically maintain a curated application list. While modi-
fications to the applications on the list are relatively minor, this approach
severely limits what can run in practice, as we will see in Section 4.
2Some unikernels, especially language-based unikernels, use other tech-
niques, discussed further in Section 6.

Container image (alpine)

Metadata
entrypoint

env variables

Application-
specific

startup script
(“init”)

Lupine app “rootfs”

Application-
specific

Lupine config

Linux kernel
source

KML
patch

KML-enabled
musl libc

Unmodified
app binary

…

libm.so

libc.so

libraries

Application-specific
Lupine kernel binary

Application-specific requirements
(manifest)

Sp
ec

ia
liz

at
io

n
Sy

st
em

 c
al

l
ov

er
he

ad

el
im

in
at

io
n

Figure 2. Specialization and system call overhead elimina-
tion in Lupine.

2.3 The Ideal Unikernel
Unfortunately, existing unikernels face challenges in terms of
generality; applications may need to be written from scratch,
potentially in an unfamiliar language (e.g., language-based
unikernels). Those that do try to address generality (e.g.,
POSIX-like unikernels) find themselves in the unenviable
position of trying to reimplement Linux, at least in part.
The ideal unikernel would enjoy all of the benefits that

they are known for while also being able to support Linux
applications and share its community.

3 Lupine Linux
We make Linux behave like a unikernel by specialization
and system call overhead elimination. We specialize Lupine
according to both applications and the unikernel constraints
such as the single-process nature or expected deployment
environments (Section 3.1). We eliminate the system call
overheads by applying KML patches to Linux that allow
applications to run in kernel mode (Section 3.2).

Like some POSIX-like unikernels (e.g., HermiTux [45] and
OSv [32]), but unlike others (e.g., Rumprun [15]), Lupine
is not a single, statically-linked binary. Instead, a Lupine
unikernel consists of a kernel binary that dynamically loads
the application code from a root filesystem (rootfs) as in
other Linux-based systems. Figure 2 shows the specifics of
the generation of Lupine kernel binary and root filesystem.
Lupine kernel binary is configured to be a small, special-
purpose Linux kernel image, obtained via the specialization
highlighted in orange in Figure 2. Also, the kernel is en-
hanced with Kernel Mode Linux (KML) so that Lupine runs
the target application as a kernel-mode process, thereby avoid-
ing context switches. An application manifest informs the
application-specific kernel configuration.
We leverage Docker container images to obtain minimal

root filesystems with applications and all their dependencies
3

 1

 10

 100

 1000

 10000

drivers
arch

sound
net

fs lib kernel
init

crypto
mm security

block
virt

samples

usr

C
o
n

fig
 o

p
tio

n
s

total
microvm

lupine base

Figure 3. Linux kernel configuration options (log scale)

such as dynamically-linked libraries (e.g., libc, libm, etc.)3.
As the root filesystem is specialized, Lupine does not employ
a general-purpose init system. Instead, Lupine creates an
application-specific startup script based on container meta-
data. For example, the entrypoint describes the parameters
with which to invoke the application, and the env variables
describe how to set up the environment. Like the kernel im-
age, the script is informed by the application manifest; for ex-
ample, it may initialize the network device, mount loopback
devices or the proc filesystem, generate entropy, set ulim-
its, set environment variables, or create directories before
executing the application. Finally, we convert the container
images that include the application binary, a KML-enabled
libc (described in Section 3.2) and the application-specific
startup script into an ext2 image that the specialized Lupine
kernel will use as its root filesystem. At runtime, a stan-
dard virtual machine monitor (e.g., Firecracker) launches the
Lupine kernel and rootfs.
The concrete details of the application manifest are out

of scope for this paper. At its simplest, an application mani-
fest could be a developer-supplied kernel configuration and
startup script.

3.1 Specialization
The Linux kernel contains considerable facilities for special-
ization through its Kconfig configuration mechanism. In
total, there are 15,953 configuration options for Linux 4.0.
Configuration options determine whether features should
be included in the kernel by compiling the source code for
the feature and either linking it into the kernel image or
into a module that can be dynamically loaded into a running
kernel. Kernel configuration options empower users to select
or enable (for example) support for a variety of hardware
(e.g., device drivers), a variety of services to applications
(e.g., filesystems, network protocols) and algorithms govern-
ing management of the most basic compute resources (e.g.,
memory management, scheduling).

Figure 3 shows the total number of available configuration
options (by directory) in the Linux source tree. Unsurpris-
ingly, almost half of the configuration options are found in
drivers to support the wide range of devices that Linux runs
3Tools such as Docker Slim [3] help ensure a minimal dependency set.

Figure 4. Breakdown of kernel configuration options down
to unnecessary ones by unikernel property.

on. Figure 3 also shows the breakdown of configuration op-
tions selected by AWS Firecracker’s microVM configuration.
This is a Linux configuration that allows a general-purpose
workload to specifically run on the Firecracker monitor on
the x86_64 architecture. This configuration can safely omit
a vast majority of configurable functionality because of the
known constraints of Firecracker, as shown in Figure 4. For
example, the vast majority of the driver and architecture-
specific options are not necessary since the virtual I/O de-
vices and architecture are pre-determined.

Even more configurable functionality can be safely omit-
ted for Lupine because of the known constraints of the
unikernel domain. As depicted in Figure 4, starting from
Firecracker’s microVM configuration, we manually removed
approximately 550 (66%) of the selected options that we
deemed potentially unnecessary for the unikernel domain
as further described below. We refer to the remaining 283
(34%) configuration options as lupine-base.

We further manually classified the 550 removed options
into categories based on features or design properties of
unikernels and not based on the Linux kernel’s structure as
in Figure 3. Application-specific options are only necessary
for certain applications and may be reintroduced on top of
lupine-base to create an application-specific configuration.
Others are not necessary for any unikernel application, ei-
ther because of the single-process nature of unikernels or
the predictable runtime environment of virtual machines in
the cloud. We now describe these categories (Figure 4) and
provide examples.

3.1.1 Application-specific options.
Unikernels are driven by a minimalist philosophy where
they only contain functionality that the application needs.
While compatibility with Linux often implies some com-
promises, an application-centric approach can be applied
towards Linux kernel configuration. To this end, we cate-
gorize certain configuration options as application-specific,

4

Option Enabled System Call(s)
ADVISE_SYSCALLS madvise, fadvise64
AIO io_setup, io_destroy, io_submit, io_cancel, io_getevents
BPF_SYSCALL bpf
EPOLL epoll_ctl, epoll_create, epoll_wait, epoll_pwait
EVENTFD eventfd, eventfd2
FANOTIFY fanotify_init, fanotify_mark
FHANDLE open_by_handle_at, name_to_handle_at
FILE_LOCKING flock
FUTEX futex, set_robust_list, get_robust_list
INOTIFY_USER inotify_init, inotify_add_watch, inotify_rm_watch
SIGNALFD signalfd, signalfd4
TIMERFD timerfd_create, timerfd_gettime, timerfd_settime

Table 1. Linux configuration options that enable/disable
system calls.

which may or may not appear in any Lupine unikernel’s
kernel configuration. We also discuss various granularities
at which an application manifest could inform kernel config-
uration, but leave the generation of such a manifest (which
could utilize static or dynamic analysis [30, 31, 37]) to future
work.

Unikernels embody DevOps industry trends, in which sys-
tem configuration and runtime operations tasks are tightly
integrated with application development. We identified ap-
proximately 100 network-related options, including a variety
of less popular protocols and 35 filesystem-related configu-
ration options that represent system configuration tradeoffs
that depend on the (single) application. At a finer granularity,
if we assume the application or container manifest details
exactly which system calls an application will use,4 then we
can configure Linux to include some necessary system calls.
For example, Table 1 lists configuration options that dictate
whether one or more system calls (and their implementa-
tions) are compiled into the kernel binary. As an example
of application-specific configuration, the redis key-value
store requires EPOLL and FUTEX by default, whereas the
nginx web server additionally requires AIO and EVENTFD.
A Lupine kernel compiled for redis does not contain the
AIO or EVENTFD-related system calls.

In addition to the above, some applications expect other
services from the kernel, for instance, the /proc filesystem or
sysctl functionality. Moreover, the Linux kernel maintains
a substantial library that resides in the kernel because of its
traditional position as a more privileged security domain.
Unikernels do not maintain the traditional privilege separa-
tion but may make use of this functionality directly or indi-
rectly by using a protocol or service that needs it (e.g., cryp-
tographic routines for IPsec). We marked 20 compression-
related and 55 crypto-related options from the microVM
configuration as application-specific. Finally, Linux contains

4While generating the manifest is, in general, an open problem, several
products and projects like DockerSlim[3] and Twistlock[11] rely on similar
system-call information.

significant facilities for debugging; a Lupine unikernel can
select up to 65 debugging and information-related kernel
configuration options from microVM’s configuration.
In total, we classified approximately 311 configuration

options as application-specific as shown in Figure 4. In Sec-
tion 4, we will evaluate the degree of application specializa-
tion via Linux kernel configuration (and its effects) achieved
in Lupine for common cloud applications.

3.1.2 Unnecessary options.
Some options in microVM’s configuration will, by defini-
tion, never be needed by any Lupine unikernel so they can
be safely eliminated. We categorize these options into two
groups: (1) those that stem from the single-process nature of
unikernels and (2) those that stem from the expected virtual
hardware environment in the cloud.

Unikernels are not intended for multiple processes. The
Linux kernel is intended to runmultiple processes, thus requir-
ing configurable functionality for synchronization, sched-
uling and resource accounting. For example, cgroups and
namespaces are specific mechanisms that limit, account for
and isolate resource utilization between processes or groups
of processes. We classified about 20 configuration options
related to cgroups and namespaces in Firecracker’s microVM
configuration.

Furthermore, the kernel is usually run in a separate, more
privileged security domain than the application. As such,
the kernel contains enhanced access control systems such
as SELinux and functionality to guard the crossing from the
application domain to the kernel domain, such as seccomp
filters, all of which are all unnecessary for unikernels. More
importantly, security options with a severe impact on per-
formance are also unnecessary for this reason. For example,
KPTI (kernel page table isolation [9]) forbids the mapping
of kernel pages into processes’ page table to mitigate the
Meltdown [40] vulnerability. This dramatically affects sys-
tem call performance; when testing with KPTI on Linux 5.0
we measured a 10x slowdown in system call latency. In total,
we eliminated 12 configuration options due to the single
security domain.
Linux is well equipped to run on multiple-processor sys-

tems. As a result, the kernel contains various options to in-
clude and tune SMP and NUMA functionality. On the other
hand, since most unikernels do not support fork, the stan-
dard approach to take advantage of multiple processors is to
run multiple unikernels.
Finally, Linux contains facilities for dynamically loading

functionality through modules. A single application facili-
tates the creation of a kernel that contains all functionality
it needs at build time.

5

Overall, we attribute the removal of 89 configuration op-
tions to the single-process—“uni”—characteristics of uniker-
nels as shown in Figure 4 (under "Multiple Processes"). In
Section 5, we examine the relaxation of this property.

Unikernels are not intended for general hardware. de-
fault configurations for Linux are intended to result in a
general-purpose system. Such a system is intimately involved
in managing hardware with configurable functionality to
perform tasks, including power management, hotplug and
driving and interfacing with devices. Unikernels, which are
typically intended to run as virtual machines in the cloud,
can leave many physical hardware management tasks to the
underlying host or hypervisor. Firecracker’s microVM ker-
nel configuration demonstrates the first step by eliminating
many unnecessary drivers and architecture-specific config-
uration options (as shown in Figure 3). Lupine’s configura-
tion goes further by classifying 150 configuration options—
including 24 options for power management that can be left
to the underlying host—as unnecessary for Lupine uniker-
nels as shown in Figure 4.

3.2 Eliminating System Call Overhead
Kernel Mode Linux [42] is an existing patch to Linux that
enables normal user processes to run in kernel mode, and
call kernel routines directly without any expensive privilege
transitions or context switches during system calls. Yet they
are processes that, unlike kernel modules, do not require any
change to the programming model and can take advantage
of all system services for normal processes such as paging
or scheduling.

While KML was designed for multiple applications to run,
some as kernel-mode processes (identified by the path to the
executable rooted at /trusted) and some as normal user-
mode processes, the goal for Lupine is to mimic a uniker-
nel that, by definition, only contains a single—privileged—
application. As a result, we modify KML for Lupine so that
all processes (of which there should be one) will execute in
kernel mode. Note that, despite running the application with
an elevated privilege level via KML, no kernel bypass occurs.
Kernel execution paths enumerated due to system calls by
an application remain identical regardless of whether KML
is in use or not.

For the implementation of KML in Lupine, we applied the
modified KML patch to the Linux kernel. We also patched
musl libc, the libc implementation used by Alpine, for the
distribution of Linux that we chose for the container images
that form the basis of Lupine unikernel images. The patch is
minimal: it replaces the syscall instruction used to issue a
system call at each call site with a normal, same-privilege
call instruction. The address of the called function is ex-
ported by the patched KML kernel using the vsyscall5. For
5The original KML design took advantage of the 32-bit kernel and dynamic
behavior in glibc to entirely avoid modifications to glibc. In 32-bit mode,

Name monitor kernel ver kernel conf userspace
MicroVM Firecracker 4.0 microVM Alpine 3.10
Lupine Firecracker 4.0 lupine-base Alpine 3.10

Table 2. Systems used to evaluate the Lupine unikernel.

most binaries that are dynamically linked, the patched libc
can simply be loaded without requiring the recompilation
of the binary. Statically linked binaries running on Lupine
must be recompiled to link against the patched libc. Note
that this is far less invasive than the changes required by
many unikernels including not only recompilation but often
a modified build.

4 Evaluation
The purpose of this evaluation is to show that Lupine can
achieve most benefits of unikernels: small image size, fast
boot time, small memory footprint, no system call overheads,
and application performance. We compare several unikernel
and non-unikernel systems as summarized in Table 2. Mi-
croVM is a baseline, representing a state-of-the-art VM-based
approach to running a Linux application on the cloud. OSv,
HermiTux and Rump are unikernels that (partially) recreate
Linux functionality inside their library OS. They provide
comparison targets to define unikernel-like functionality
for the purposes of the evaluation. All systems use the Fire-
cracker monitor, except for HermiTux and Rump that use
specialized unikernel monitors [63].6

We use the same Linux kernel version for all cases. We use
Linux 4.0 with KML patches applied.7 MicroVM uses AWS
Firecracker’s microVM configuration adapted to Linux 4.0.
Lupine uses an application-specific configuration atop the
microVM-derived lupine-base configuration, as described in
Section 3.1, with 2 variants:

• -nokml is used to highlight the contribution of elimi-
nating context switches versus specialization. Lupine-
nokml differs from lupine in two ways: (1) it uses a
kernel that does not have the KML patch applied, and
(2) contains CONFIG_PARAVIRT, as also present in mi-
croVM, which unfortunately conflicts with KML de-
spite being important for performance (as we will see).

• -tiny indicates Lupine is optimized for size over per-
formance. Lupine-tiny differs from lupine in that it (1)
is compiled to optimize for space with -Os rather than

some versions of glibc would dynamically select whether to do the newer,
faster sysenter x86 instruction to enter the kernel on a system call or use
the older, slower int 0x80 mechanism. The decision was made based on
information exported by the kernel via the vsyscall mechanism (a kernel
page exported to user space). KML introduced a third option, call
6Both uhyve and solo5-hvt are descendants of ukvm.
7Linux 4.0 is the most recent available version for KML.

6

for performance with -O2 and (2) has 9 modified con-
figuration options that state clear space/performance
tradeoffs in Kconfig (e.g., CONFIG_BASE_FULL).8

A third variant is not application-specific:
• -general is a Lupine kernel with a configuration de-
rived from the union of all application-specific con-
figurations from the most popular 20 applications as
described in Table 3 in Section 4.1.

All experiments were run on a single server with an 8 core In-
tel Xeon CPU (E3-1270 v6) at 3.80GHz and 16 GB of memory.
For a fair comparison, the unikernel (or guest) was limited
to 1 VCPU (pinned to a physical core) as most unikernels
are single-threaded and 512 MB of memory (except the ex-
periment for memory footprint). This was done for all per-
formance tests. The VM monitor could also make use of 3
additional CPUs and the benchmark client used the remain-
ing 4 physical CPUs if a client was needed.
We present three main conclusions from the evaluation.

First, we confirm that kernel specialization is important:
Lupine achieves up to 73% smaller image size, 59% faster boot
time, 28% lower memory footprint and 33% higher through-
put than the state-of-the-art VM. However, we find that
specialization on an application-level granularity may not
be important: only 19 application-specific options cover the
20 most popular applications (83% of all downloads) and
we find at most 4% reduction in performance by using a
common configuration. Second, we find that, while running
the application in the same privilege domain improves per-
formance up to 40% on microbenchmarks, it only has a 4%
improvement in macrobenchmarks, indicating that system
call overhead should not be a primary concern for uniker-
nel developers. Finally, we show that Lupine avoids major
pitfalls of POSIX-like unikernels that stem from not being
Linux-based, including both the lack of support for unmod-
ified applications and performance from highly-optimized
code.

4.1 Configuration Diversity
Lupine attempts to mimic the only-what-you-need approach
of unikernels in order to achieve some of their performance
and security characteristics. In this subsection, we evaluate
how much specialization of the Linux kernel occurs in prac-
tice when considering the most popular cloud applications.
Our primary finding is that many of the same configuration
options are required by the most popular applications, and
they are relatively few (19 options for the 20 most popular
applications).
Unlike other unikernel approaches, Lupine poses no re-

strictions on applications and requires no application modi-
fications, alternate build processes, or curated package lists.

8Determining exactly which options should be selected for a tiny kernel
is difficult, but studies have shown that tinyconfig is a good starting
point [16].

Name Downloads Description
Options atop
lupine-base

nginx 1.7 Web server 13
postgres 1.6 Database 10
httpd 1.4 Web server 13
node 1.2 Language runtime 5
redis 1.2 Key-value store 10
mongo 1.2 NOSQL database 11
mysql 1.2 Database 9
traefik 1.1 Edge router 8
memcached 0.9 Key-value store 10
hello-world 0.9 C program “hello” 0
mariadb 0.8 Database 13
golang 0.6 Language runtime 0
python 0.5 Language runtime 0
openjdk 0.5 Language runtime 0
rabbitmq 0.5 Message broker 12
php 0.4 Language runtime 0
wordpress 0.4 PHP/mysql blog tool 9
haproxy 0.4 Load balancer 8
influxdb 0.3 Time series database 11
elasticsearch 0.3 Search engine 12

Table 3. Top twenty most popular applications on Docker
Hub (by billions of downloads) and the number of additional
configuration options each requires beyond the lupine-base
kernel configuration. 9

As a result, we were able to directly run the most popu-
lar cloud applications on Lupine unikernels. To determine
popularity, we used the 20 most downloaded container im-
ages from Docker Hub [2]. We find that popularity follows a
power-law distribution: 20 applications account for 83% of
all downloads. Table 3 lists the applications.
For each application, in place of an application manifest,

we carried out the following process to determine the mini-
mal viable configuration. First we ran the application as a
standard container to determine success criteria for the ap-
plication. While success criteria could include sophisticated
test suites or achieving performance targets, we limited our-
selves to the following tests. Language runtimes like golang,
openjdk or python were tested by compiling (when applica-
ble) a hello world application and testing that the message
was correctly printed. Servers like elasticsearch or nginx
were tested with simple queries or health status queries.
haproxy and traefik were tested by checking the logs in-
dicating that they were ready to accept traffic. We discuss
the potential pitfalls of this approach in Section 6.

Once we had determined success criteria, we attempted to
run the application on a Linux kernel built with the lupine-
base configuration as described in Section 3.1. Recall that
the base configuration is derived from microVM but lacks

9We exclude the Docker daemon in this table because Linux 4.0 does not
support layered file systems, a prerequisite for Docker.

7

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14 16 18 20

N
u
m

b
e

r
c
o
n

fi
g

 o
p
tio

n
s

Support for top x apps

Figure 5. Growth of unique kernel configuration options to
support more applications.

about 550 configuration options that we classified as hard-
ware management, multiprocessing and application-specific.
Some applications require no further configuration options
to be enabled beyond lupine-base. For others, we added new
options one by one while testing the application at each step.
We expected all new options to be from the set classified as
application-specific.
The process was manual: application output guided

which configuration options to try. For example, an er-
ror message like “the futex facility returned an unexpected
error code” indicated that we should add CONFIG_FUTEX,
“epoll_create1 failed: function not implemented” suggested we
try CONFIG_EPOLL and “can’t create UNIX socket” indicated
CONFIG_UNIX. Some error messages were less helpful and
required some trial and error. Finally, some messages indi-
cated that the application was likely not well-suited to be a
unikernel. For example, postgres in Linux is made up of five
processes (background writers, checkpointer, and replicator).
It required CONFIG_SYSVIPC, an option we had classified as
multi-process related and therefore not appropriate for a
unikernel. Lupine can run such an application despite its ob-
vious non-unikernel character, which is an advantage over
other unikernel-based approaches. We will discuss the im-
plications of relaxing unikernel restrictions in Section 5.

We conservatively estimate the time spent per application
for a knowledgeable researcher or graduate student as 1 to
3 hours. However, we found knowledge of kernel options
and experience accelerated the process. For example, we no
longer need to perform trial and error for certain options, as
we have learned that CONFIG_FUTEX is needed by glibc-based
applications, and CONFIG_EPOLL is used by applications that
utilize event polling.
Table 3 shows the number of configuration options (be-

yond lupine-base) deemed necessary to reach the success
criteria for each application. Figure 5 depicts overlapping
options thus showing how the union of the necessary config-
uration options grows as more applications are considered.
The union of all configuration options is 19; in other words,
a kernel (lupine-general) with only 19 configuration options
added on top of the lupine-base configuration is sufficient to
run all 20 of the most popular applications. The flattening of

 0
 2
 4
 6
 8

 10
 12
 14
 16

microVM
lupine

lupine-general

hermitux
osv rump

M
e

g
a

b
yt

e
s

Figure 6. Image size for hello world.

the growth curve provides evidence that a relatively small
set of configuration options may be sufficient to support a
large number of popular applications.
As we show later in the evaluation, a kernel containing

all of these common options, lupine-general, performs simi-
larly to a manually configured kernel, an observation that
matches recent results from building a systematic kernel
debloating framework [35]. As a result, general users will
likely not need to perform the manual process described in
this section and can use lupine-general directly. It is an open
question, however, to provide a guarantee that lupine-general
is sufficient for a given workload.

4.2 Image Size
Most unikernels achieve small image sizes by eschewing gen-
erality. Similarly, Lupine uses the Linux kernel’s configura-
tion facilities for specialization. Figure 6 compares the kernel
image size of Lupine to microVM and several unikernels—all
configured to run a simple hello world application in or-
der to measure the minimal possible kernel image size. The
lupine-base image (sufficient for the hello world) is only 27%
of the microVM image, which is already a slim kernel image
for general cloud applications. When configuring Lupine to
optimize for size over performance (-tiny), the Lupine image
shrinks by a further 6%.

Figure 6 shows Lupine to be comparable to our reference
unikernel images. All configurations except Rump utilize
dynamic loading, so we report only the size of the kernel. To
avoid unfairly penalizing unikernels like Rump, that stati-
cally link large libraries (like libc, which consists of 24M),
we configure them to run a trivial hello world application
without libc.

We also examined the effect on application-specific con-
figuration on the Lupine kernel image size. We found that
the image size of lupine kernels varied from 27 − 33% of mi-
croVM’s baseline. Compared to lupine-base, this corresponds
to an increase of up to 19 percent. Even with the largest
Lupine kernel configuration (lupine-general, that is capable
of running all of the top 20 applications) the resulting image
size remains smaller than the corresponding OSv and Rump
image sizes. We note that lupine-general is an upper bound
for kernel image size for the kernels associated with any
application in Table 3, including redis, nginx, etc.

8

 0
 10
 20
 30
 40
 50
 60

microVM
lupine-nokml

lupine-nokml-general

hermitux
osv-rofs

osv-zfs
rump

M
ill

is
e

c
o

n
d

s

Figure 7. Boot time for hello world.

4.3 Boot Time
Figure 7 shows the boot time to run a hello-world application
for each configuration. Firecracker logs the boot time of all
Linux variants and OSv based on an I/O port write from the
guest. We modified the unikernel monitors solo5-hvt and
uhyve respectively to similarly measure boot time via an I/O
port write from the guest.
As shown in Figure 7, use of a unikernel monitor does

not guarantee fast boot time. Instead, unikernel implementa-
tion choices dominate the boot time. The OSv measurements
show how dramatic the effects of unikernel implementation
can be: when we first measured it using zfs (the standard
r/w filesystem for OSv), boot time was 10x slower than the
numbers we had seen reported elsewhere. After investiga-
tion, we found that a reduction in unikernel complexity to
use a read-only filesystem resulted in the 10x improvement,
thus underscoring the importance of implementation.
Lupine’s configuration shows significant improvement

over microVM and comparable boot time to the reference
unikernels. In Figure 7, we present the boot time without
KML (lupine-nokml). A primary enabler of fast boot time
in Linux comes from the CONFIG_PARAVIRT configuration
option which is active in microVM and lupine-nokml, but
currently incompatible with KML. Without this option boot
time jumps to 71 ms for Lupine. We believe that the in-
compatibilities with KML are not fundamental and could be
overcome with engineering effort and would result in similar
boot times to lupine-nokml. We do not find an improvement
in Lupine’s boot time when employing space-saving tech-
niques (-tiny) with or without KML. In other words, the 6%
reduction in image size described in Section 4.2 does not
affect boot time thus implying that boot time is more about
reducing the complexity of the boot process than the image
size. For lupine-general, we measured an additional boot time
of 2 ms. Note that this is still faster than HermiTux and OSv
(with zfs). We note that, similar to image size, lupine-general
conveys an upper bound in kernel boot time for the kernels
associated with any application in Table 3, including redis,
nginx, etc.

4.4 Memory Footprint
Unikernels achieve low memory footprint by using small
runtime images that include only what is needed to run a

 0

 10

 20

 30

 40

 50

microVM
lupine

lupine-general

hermitux
osv rump

M
e

g
a
b
yt

e
s hello nginx redis

Figure 8. Memory footprint.

particular application.We define thememory footprint for an
application as the minimum amount of memory required by
the unikernel to successfully run that application as defined
by success criteria described in Section 4.1. We determine
the memory footprint by repeatedly testing the unikernel
with a decreasing memory parameter passed to the monitor.
Our choice of applications was severely limited by what the
(non-Lupine) unikernels could run without modification; we
only present the memory footprint for three applications
as shown in Figure 8. Unfortunately, HermiTux cannot run
nginx, so we omit that bar.
Figure 8 shows the memory footprint for each applica-

tion. In both application-specific and general cases, Lupine
achieves a comparable memory footprint that is even smaller
than unikernel approaches for redis. This is due in part to
lazy allocation. While each of the unikernels shows variation
in memory footprint, the Linux-based approaches (microVM
and Lupine) do not.10 There is no variation because the Linux
kernel binary (the first binary to be loaded) is more or less
the same size across applications. The binary size of the ap-
plication is irrelevant if much of it is loaded lazily and even a
large application-level allocation like the one made by redis
may not be populated until later. However, an argument can
be made in favor of eliminating laziness and upfront knowl-
edge of whether sufficient resources will be available for an
application. We further discuss this issue in the context of
immutable infrastructure in Section 6.

4.5 System call latency microbenchmark
Unikernels claim low system call latency due to the fact that
the application is directly linked with the library OS. Using
Lupine, a Linux system, can achieve similar system call la-
tency as other POSIX-like unikernel approaches. Figure 9
shows the lmbench system call latency benchmark for the
various systems. 11 The results show that Lupine is competi-
tive with unikernel approaches for the null (getppid), read

10OSv is similar to Linux in this case in that it loads the application dynam-
ically, which is why nginx and hello exhibit the same memory footprint;
we believe redis exhibits a larger memory footprint because of how the
OSv memory allocator works.
11We only use the system call latency benchmark in lmbench due to lack
of support in some unikernels for more complex benchmarks. However,
we still report the full lmbench result for lupine-general and microvm in
Appendix A.

9

 0

 0.02

 0.04

 0.06

 0.08

 0.1

microvm

lupine-nokml

lupine
lupine-general

hermitux

osv
rump

.19.17

L
a
te

n
cy

 (
μ

s
)

null
read
write

Figure 9. System call latency via lmbench.

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4

 0 20 40 60 80 100 120 140 160

K
M

L
 im

p
ro

ve
m

e
n

t

Iterations between system calls

Figure 10. Relationship of KML syscall latency improve-
ment to busying-waiting iterations (the more busy-waiting
iterations the less frequent of user-kernel mode switching).

and write tests in lmbench. OSv shows the effects of imple-
mentation choices as getppid (issued by the null system call
test) is hardcoded to always return 0 without any indirection.
Read of /dev/zero is unsupported and write to /dev/null
is almost as expensive as the microVM case.

Experimentation with lupine-nokml shows that both spe-
cialization and system call overhead elimination play a role.
Specialization contributes up to 56% improvement (achieved
during the write test) over microVM. However, we found no
differences in system call latency between the application-
specific and general variants (lupine-general) of Lupine. KML
provides Lupine an additional 40% (achieved during the null
test) improvement in system call latency over lupine-nokml.

To better understand the potential performance improve-
ments of KML on Lupine, we designed a microbenchmark
in which we issued the null (getppid) system call latency
test in a loop, while inserting a configurable amount of CPU
work via another tight loop to control the frequency of the
switching between user and kernel mode: the frequency of
switching decreases as the number of iterations increases.

In an extreme case where the application calls the system
call without doing anything else (0 iterations) KML provides
a 40% performance improvement. However, Figure 10 shows
how quickly the KML benefits are amortized away: with
only 160 iterations between the issued system calls the orig-
inal 40% improvement in latency drops below 5%. We find

Name redis-get redis-set nginx-conn nginx-sess
microVM 1.00 1.00 1.00 1.00
lupine-general 1.19 1.20 1.29 1.15
lupine 1.21 1.22 1.33 1.14
lupine-tiny 1.15 1.16 1.23 1.11
lupine-nokml 1.20 1.21 1.29 1.16
lupine-nokml-tiny 1.13 1.13 1.21 1.12
hermitux .66 .67
osv .87 .53
rump .99 .99 1.25 .53

Table 4. Application performance normalized to MicroVM
(Note: higher value is better).

similarly low KML benefits for real-world applications in
Section 4.6.

4.6 Application performance
Unikernels boast good application performance due to lack
of bloat and the elimination of system call latency. Table 4
shows the throughput of two popular Web applications: the
nginx web server and the redis key-value store, normal-
ized to microVM performance. As in the memory footprint
experiment in Section 4.4, we were severely limited in the
choice of applications by what the various unikernels could
run without modification.

For clients, we used redis-benchmark to benchmark two
common redis commands, get and set, measuring requests
per second. For nginx, we used ab to measure requests per
second. Under the connection-based scenario (nginx-conn),
one connection sends only one HTTP request. Under the
session-based scenario (nginx-sess), one connection sends
one hundred HTTP requests.12 We ran the clients on the
same physical machine to avoid uncontrolled network ef-
fects.
As shown in Table 4, Lupine outperforms the baseline

and all the unikernels. A general kernel (lupine-general) that
supports 20 applications in Section 3 does not sacrifice appli-
cation performance. We note that, as a unikernel-like system
with a single trust domain, Lupine does not require the use of
many recent security enhancements that have been shown to
incur significant slowdowns, oftentimes more than 100% [52].
We attribute much of Lupine’s 20% (or greater) application
performance improvement (when compared to baseline) to
disabling these enhancements. The poor performance of
the unikernels is most likely due to the fact that the imple-
mentation of kernel functionality in Linux has been highly
optimized over many years thanks to the large Linux com-
munity, beyond what other implementations can achieve.
We would like to have more data points, but the inability to
run applications on the unikernels is a significant challenge:
even with these two extremely popular applications, OSv

12We use the –keepalive option in ab.
10

drops connections for redis and nginx has not been curated
for HermiTux.
Within the Lupine variants, optimizing for space (e.g., -

tiny) can cost up to 10 percentage points (for nginx-conn),
while KML adds at most 4 percentage points (also for nginx-
conn). As in the other experiments, KML and optimizing
for size affects performance only a small amount relative to
specialization via configuration.

5 Beyond Unikernels
Unikernel applications (and their developers) are typically
restricted from using multiple processes, processors, security
rings and users. These restrictions are often promoted as a
feature (e.g., a single address space saves TLB flushes and
improves context-switch performance [32, 45]) and justified
or downplayed in certain contexts (e.g., many microservices
do not utilize multi-processing [64]). Unfortunately, there is
no room for bending the rules: as a unikernel, an application
that issues fork will often crash or enter into an unexpected
state by a stubbed-out fork implementation (e.g., continuing
as a child where there is no parent). Such rigidity leads to
serious issues for compatibility: as we encountered in our
evaluation, it is unlikely that an existing application will run
unmodified on a unikernel, even if the library OS is more-
or-less binary compatible. Furthermore, there are situations
where relaxing the unikernel restrictions is imperative. As
a trivial example, building the Linux kernel with a single
processor takes almost twice as long as with two processors.
Lupine is, at its core, a Linux system, and relaxing its

unikernel properties is as simple as re-enabling the relevant
configuration options. This results in a graceful degrada-
tion of unikernel-like performance properties. For example,
rather than crashing on fork, Lupine can continue to exe-
cute correctly even if it begins to experience context switch
overheads. Next, we investigate what the cost would be for
Lupine to support applications that use multiprocessing fea-
tures and whether including this support would adversely
affect applications that do not.
We first consider the use of multiple address spaces and

experiment with two different scenarios. First, we consider
auxiliary processes that spend most of their time waiting
either waking up or running in a frequency that does not in-
terfere or create contention on resources with the application.
We refer to such processes as control processes, i.e., processes
that are responsible for monitoring the application for mul-
tiple purposes (e.g., shells, environment setup, recovery and
analysis, etc.). In practice, it is extremely common, for ex-
ample, to find a script that forks an application from a shell
after setting up some environment variables. Lack of sup-
port for this case from existing POSIX-compliant unikernel
implementations severely limits their generality. We design
an experiment to show that such uses of multiple address

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 1 4 16 64 256 1024

M
ic

ro
s
e
c
o
n

d
s

Control Processes

KML Null
KML Read

KML Write
NOKML Null

NOKML Read
NOKML Write

Figure 11. System call latency with different number of
background control processes for KML and NOKML.

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4

 1 2 4 8 16

M
ill

is
e
c
o
n

d
s

Groups (10 senders and 10 receivers per group)

KML Thread
KML Process

NOKML Thread
NOKML Process

Figure 12. Perf context switch benchmark with threads and
processes.

spaces are not harmful to unikernel-like performance. Specif-
ically, we measure the system call latencies after launching
2𝑖 (𝑖 = 0, 1, . . . , 10) control processes, using sleep as the con-
trol process. As shown in Figure 11, in all cases, there is no
latency increase; all measurements (averaged over 30 runs)
are within one standard deviation.

Second, we consider co-existing processes that contend re-
sources with each other and may experience context switch
overheads. To quantify these overheads, we compare the
context switch overheads for threads that do not switch ad-
dress spaces (to approximate unikernel behavior) versus pro-
cesses. We use the messaging benchmark in perf [10] where
2𝑖 (𝑖 = 0, 1, 2, 3, 4) groups (10 senders and 10 receivers per
group) of threads or processes message each other via UNIX
sockets. The benchmark implements threads with pthread
and processes with fork. For each configuration, we average
the results of 30 runs. As shown in Figure 12, surprisingly,
in all numbers of groups, switching processes is not slower
than switching threads as the maximum time increase is 3%
(in the KML case) when there is 1 group. In some cases, we
even see process switching outperforming thread switching
by 0− 4%. This finding matches prior work [8]. Since no per-
formance is lost, we conclude that the adherence to a single
address space is unfounded from a performance perspective

Next, we investigate the effects of Linux’s symmetric mul-
tiprocessing (SMP) support as configured by the CONFIG_SMP

11

kernel configuration option. We devised three experiments,
sem_posix, futex andmake -j, to show the worst-case scenario
for supporting SMP: a system with one processor running
applications that frequently context switch. We expect to
see an overhead from a kernel that supports SMP versus a
more unikernel-like kernel that does not. sem_posix and fu-
tex spawn up to 512 workers that rapidly exercise futex and
POSIX semaphore wait and post operations. Each worker
starts 4 processes sharing a futex or semaphore. make -j
builds the Linux kernel using up to 512 concurrent processes.
We found sem_posix incurs up to 3%, futex incurs up to 8%,
and make incurs up to 3% overhead over a kernel without
SMP support. In most cases, where there would be fewer
context switches, we would expect even less overhead, so
the choice to use SMP—rejected by unikernels—will almost
always outweigh the alternative.

6 Discussion
The evaluation in Section 4 and the opportunity to grace-
fully degrade for non-unikernel workloads described in Sec-
tion 5 make a compelling case for Lupine over other general-
purpose unikernel approaches. Here we discuss the robust-
ness of our analysis of Lupine and some benefits that uniker-
nels achieve that Lupine does not.

6.1 Threats to validity
The conclusions drawn from our evaluation of Lupine rely on
the correctness of our methodology, mainly in how the Linux
kernel configuration—a notoriously messy part of Linux—is
treated. The main risk is that Lupine has underestimated the
necessary kernel configuration options for each application.
First, when determining the lupine-base configuration in

Section 3, wemay havemisclassified certain kernel options as
unnecessary rather than application specific. Moreover, the
minimum set of configuration options that make up lupine-
basemay not be unique especially when considering options
that provide similar functionality with different performance
or space tradeoffs such as different compiler flags: -O2 and
-Os. Even if we were to find a different, more minimal lupine-
base, the conclusions would hold.
Deriving an application-specific kernel configuration is

more concerning. While not a focus of this paper—we as-
sume its existence in the form of an applicationmanifest—the
evaluation of Lupine depends on an accurate application-
specific kernel configuration. We determined configurations
for the top 20 applications on Docker Hub based on a manual
process based on simple success criteria and benchmarks
that allowed us to quickly evaluate the configurations for
many applications. When considering applications that do
one thing and do it well (e.g., microservices), it may be more
feasible to have a complete test suite to ensure that all con-
figuration options are accounted for. In general, the problem
is difficult: a large body of ongoing work attempts to derive

kernel configuration from an application [30, 31, 37]. How-
ever, we believe the risk to be low: we noticed that many
applications perform a series of checks when they start up,
reducing the importance of complex success criteria. In our
experience, in all cases, a weaker success criteria based on
console output matched the configurations derived based on
benchmark success.
Finally, we note that language-based unikernels, such as

MirageOS [41], while unable to run existing POSIX applica-
tions, can use language-level analyses and package manage-
ment techniques to determine application dependencies on
OS functionality (e.g., networking), essentially removing the
need for a manifest as needed by Lupine.

6.2 Unachieved unikernel benefits
Two of the unikernels we evaluated Lupine against (Her-
miTux [45] and Rump [23]) run on unikernel monitors [63]
that are slim and optimized for unikernel workloads. Beyond
boot times, unikernel monitors have been demonstrated to
require such a small amount of host functionality that they
can be implemented even as processes, thereby increasing
performance while maintaining isolation [64, 65]. Linux does
not currently run on a unikernel monitor, but it may possibly
in the future given the fact that Linux can run in a variety of
limited hardware environments (e.g., even with no MMU) or
in environments that are not hardware like (e.g., User Mode
Linux [12]).
The concept of immutable infrastructure has been associ-

atedwith unikernels—especially language-based unikernels—
in part because they push tasks that are traditionally done at
deploy-time or later (like application configuration) to build
time. As a result, the unikernel is specialized not just for
an application but for a particular deployment of an appli-
cation. However, general-purpose systems and applications
often have dynamic or lazy properties—such as those seen
when measuring the memory footprint in Section 4.4—that
limit how immutable deployments can be. For example, in-
terpreted code like JavaScript has become popular in the
cloud but is dynamically loaded and interpreted. Dynamic
behavior—which is pervasive in existing cloud applications
and programming models—and immutability will continue
to participate in a fundamental tussle as the cloud landscape
evolves.

Another benefit of language-based unikernels that Lupine
does not enjoy is the ability to perform language-based anal-
yses or compiler optimizations that span both the applica-
tion and kernel domain. For instance, MirageOS can employ
whole-system optimization techniques on the OCaml code—
from application to device drivers. POSIX-like unikernels
tend to have less opportunity for this type of compiler op-
timization due to practical deployment and compatibility
concerns when attempting to support legacy applications
without completely changing their build processes. In the
case of Linux, while link-time-optimization (LTO) exists for

12

the kernel, it does not include the application in the analy-
ses. Specializing the kernel via configuration, as shown for
Lupine, may improve the results of LTO, but kernel routines
or system calls cannot be inlined into the application without
modifying both the kernel and application build processes.
While some interesting new approaches are attempting this
in the context of Linux [51], simultaneously maintaining full
generality, or the ability to run any application (as Lupine
can), remains a challenge.

7 Related Work
Unikernel-like work that leverages Linux. The work that
is most similar to ours includes efforts that attempt to lever-
age Linux as a unikernel. LightVM [43] demonstrates that
VMs (and their associated tooling) can be as lightweight as
containers and describes both mini-OS [7]-based unikernels
and small Linux-based images using a tool called TinyX.
While TinyX shares many design goals with Lupine, it does
not focus on how to specialize through kernel configuration,
nor does it examine the effects of running application code
in the same privilege ring as the kernel.
X-container [55] uses Linux as a library OS by leverag-

ing Xen [18] paravirtualization and eliminating guest kernel
isolation. It uses binary translation to remove syscall in-
structions while avoiding application modifications (such
as the musl libc modifications we make in Lupine). How-
ever, X-container requires modifications to both Linux and
Xen. Unlike unikernel approaches, but similar to Lupine, X-
container does support multi-processing and is targeted at
container workloads. X-container does not investigate spe-
cializing the kernel through configuration as Lupine does.

UniLinux [20] and Unikernel Linux (UKL) [51] are recently
proposed projects that share the main goal with Lupine:
using Linux to achieve unikernel-like properties. For these,
Lupine can provide a baseline; we evaluate how close Linux
comes to these properties using existing techniques. UKL, on
the other hand, involves relatively heavymodifications to the
Linux source code, the build process, and the application, by
building everything as a single binary and directly jumping
to the application entry point from the kernel initialization
code. Lupine uses existing mechanisms to achieve similar
properties, thus making it immediately practical but unable
to take advantage of techniques like cross-layer optimization
that UKL may benefit from in the future.

Similarly, in other work, Linux has been used as a library
but not a unikernel: the Linux Kernel Library [47] provides a
way to compile Linux as a library for use by applications. It
reuses Linux code (as does User Mode Linux [12]) to run in a
deprivileged mode. LKL requires extensive modifications to
Linux and has not been merged upstream. Also, LKL does not
attempt unikernel-like isolation but provides a mechanism
for user-space projects to take advantage of Linux-quality
networking or filesystem implementations.

The Linux configuration system The Linux configura-
tion system is complex and various efforts have been un-
dertaken to better understand it. The existing efforts that
address kernel configuration include approaches for extract-
ing the mapping between the Linux kernel configuration
options and source files [24, 56], finding the correlation
between configuration and the kernel size [16], and meth-
ods to select the minimum set of configurations to produce
full coverage for testing [59, 61]. When applied to security,
configuration-based kernel specialization has been shown
to have significant benefits. For instance, Alharthi et al. [17]
study 1530 Linux kernel vulnerabilities and show that 89% of
these can be nullified via configuration specialization. Kur-
mus et al. [37] show that 50% to 85% of the attack surface
can be reduced in either of these forms via configuration.
There are (semi-)automatic approaches to specialize the

kernel via configuration [22, 29, 30, 35, 37–39, 43, 57, 60, 66].
These approaches use dynamic analysis techniques (e.g., trac-
ing) to determine what parts of the kernel are executed and
generate the configuration. They are currently limited by
only considering code executed during the analysis phase.
Similarly, debloating has been applied to user-space soft-
ware with techniques such as program analysis, compiler
optimization and machine learning [21, 27, 28, 48–50, 54, 58].
Though our results suggest it may not be necessary to spe-
cialize on a per-application basis, Lupine can benefit from
such approaches [36, 37] as a way to generate application
manifests.

8 Conclusion
While unikernels and library OS designs seem like a rea-
sonable, lightweight alternative to more traditional virtual
machines, the desire to increase the generality of unikernels
along with an underestimation of the versatility of Linux has
led us to stray too far from the potential benefits of uniker-
nels. We show that Lupine, a pure Linux system, can outper-
form such unikernels in all categories including image size,
boot time, memory footprint and application performance
while maintaining vital properties, e.g., the community and
engineering effort in the past three decades. Future research
efforts should focus on making Linux specialization more
effective and accessible.

Acknowledgement
We thank the anonymous reviewers of EuroSys and our
shepherd, Thomas Pasquier, for the valuable feedback that
improved this paper. This work is supported in part by IBM-
ILLINOIS Center for Cognitive Computing Systems Research
(C3SR) - a research collaboration as part of the IBM AI Hori-
zons Network. This work is also supported in part by the
Office of Naval Research (ONR) grant N00014-17-S-B010.

13

Any opinions, findings, and conclusions made in this mate-
rial are those of the authors and do not necessarily reflect
the views of the funding agency.

References
[1] AWS Lambda. https://aws.amazon.com/lambda/. (Accessed on 2016-

03-04).
[2] Docker hub. https://hub.docker.com/.
[3] Dockerslim. https://dockersl.im/.
[4] Firecracker. https://firecracker-microvm.github.io/.
[5] IBM OpenWhisk. https://developer.ibm.com/open/openwhisk/. (Ac-

cessed on 2016-03-04).
[6] LING. http://erlangonxen.org.
[7] Mini-os. https://wiki.xenproject.org/wiki/Mini-OS.
[8] On threads, processes and co-processes. https://elinux.org/images/1/

1c/Ben-Yossef-GoodBadUgly.pdf.
[9] Page table isolation (pti). https://www.kernel.org/doc/html/latest/x86/

pti.html.
[10] perf - performance analysis tools for linux. http://man7.org/linux/man-

pages/man1/perf.1.html.
[11] Twistlock | container security & cloud native security. https://www.

twistlock.com/.
[12] The user-mode linux kernel home page. http://user-mode-linux.

sourceforge.net/.
[13] Clive: Removing (most of) the software stack from the cloud.

http://lsub.org/ls/clive.html, Apr. 2015.
[14] Javascript library operating system for the cloud. http://runtimejs.org/,

Apr. 2015.
[15] The rumprun unikernel and toolchain for various platforms.

https://github.com/rumpkernel/rumprun, Apr. 2015.
[16] M. Acher, H. Martin, J. A. Pereira, A. Blouin, J.-M. Jézéquel, D. E.

Khelladi, L. Lesoil, and O. Barais. Learning Very Large Configuration
Spaces: What Matters for Linux Kernel Sizes. Research report, Inria
Rennes - Bretagne Atlantique, Oct. 2019.

[17] M. Alharthi, H. Hu, H. Moon, and T. Kim. On the Effectiveness of
Kernel Debloating via Compile-time Configuration. In Proceedings of
the 1st Workshop on SoftwAre debLoating And Delayering, Amsterdam,
Netherlands, July 2018.

[18] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the Art of Virtualization. In
Proc. of ACM SOSP, Bolton Landing, NY, Oct. 2003.

[19] A. Bratterud, A.-A.Walla, H. Haugerud, P. E. Engelstad, and K. Begnum.
Includeos: A minimal, resource efficient unikernel for cloud services.
In Proc. of IEEE CloudCom, Vancouver,Canada, Nov. 2015.

[20] T. Chen. Unikernelized Real Time Linux & IoT. In Linux Foundation
RT-Summit, Prague, Czech Republic, Oct. 2017.

[21] Y. Chen, S. Sun, T. Lan, and G. Venkataramani. TOSS: Tailoring Online
Server Systems through Binary Feature Customization. In Proceed-
ings of the 2018 Workshop on Forming an Ecosystem Around Software
Transformation (FEAST’18), Toronto, Canada, Oct. 2018.

[22] J. Corbet. A different approach to kernel configuration. https://lwn.
net/Articles/733405/, Sept. 2016.

[23] J. Cormack. The rump kernel: A tool for driver development and a
toolkit for applications.

[24] C. Dietrich, R. Tartler, W. Schröder-Preikschat, and D. Lohmann. A
Robust Approach for Variability Extraction from the Linux Build Sys-
tem. In Proceedings of the 16th International Software Product Line
Conference (SPLC’12), 2012.

[25] P. Emmerich, M. Pudelko, S. Bauer, and G. Carle. Writing User Space
Network Drivers. CoRR, abs/1901.10664, 2019.

[26] D. R. Engler, M. F. Kaashoek, and J. W. O’Toole. Exokernel: An operat-
ing system architecture for application-level resource management.
In Proc. of ACM SOSP, Copper Mountain, CO, Dec. 1995.

[27] K. Heo, W. Lee, P. Pashakhanloo, and M. Naik. Effective Program
Debloating via Reinforcement Learning. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security
(CCS’18), 2018.

[28] Y. Jiang, D. Wu, and P. Liu. JRed: Program Customization and Bloat-
ware Mitigation Based on Static Analysis. In 2016 IEEE 40th Annual
Computer Software and Applications Conference, 2016.

[29] J. Kang. A Practical Approach of Tailoring Linux Kernel. In The Linux
Foundation Open Source Summit North America, Los Angeles, CA, Sept.
2017.

[30] J. Kang. An Empirical Study of an Advanced Kernel Tailoring Frame-
work. In The Linux Foundation Open Source Summit, Vancouver, BC,
Canada, Aug. 2018.

[31] J. Kang. Linux kernel tailoring framework. https://github.com/ultract/
linux-kernel-tailoring-framework, Aug. 2018.

[32] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti, and
V. Zolotarov. OSv: optimizing the operating system for virtual ma-
chines. In Proc. of USENIX Annual Technical Conf., Philadelphia, PA,
June 2014.

[33] E. Kohler, R. Morris, B. Chen, J. Jannotti, and F. M. Kaashoek. The Click
Modular Router. ACM Transactions on Compuer Systems, 18:263–297,
August 2000.

[34] R. Koller and D. Williams. Will serverless end the dominance of linux
in the cloud? In Proc. of USENIX HotOS, Whistler, BC, Canada, May
2017.

[35] H. Kuo, J. Chen, S. Mohan, and T. Xu. Set the Configuration for
the Heart of the OS: On the Practicality of Operating System Kernel
Debloating. Proc. ACM Meas. Anal. Comput. Syst., 4(1), Mar. 2020.

[36] H. Kuo, A. Gunasekaran, Y. Jang, S. Mohan, R. B. Bobba, D. Lie, and
J. Walker. MultiK: A Framework for Orchestrating Multiple Specialized
Kernels. CoRR, abs/1903.06889, 2019.

[37] A. Kurmus, R. Tartler, D. Dorneanu, B. Heinloth, V. Rothberg,
A. Ruprecht, W. Schröder-Preikschat, D. Lohmann, and R. Kapitza.
Attack Surface Metrics and Automated Compile-Time OS Kernel Tai-
loring. In Proceedings of the 20th Annual Network and Distributed
System Security Symposium (NDSS’13), San Diego, CA, USA, Feb. 2013.

[38] C.-T. Lee, Z.-W. Hong, and J.-M. Lin. Linux Kernel Customization for
Embedded Systems By Using Call Graph Approach. In Proceedings of
the 2003 Asia and South Pacific Design Automation Conference (ASP-
DAC’03), Jan. 2003.

[39] C.-T. Lee, J.-M. Lin, Z.-W. Hong, and W.-T. Lee. An Application-
Oriented Linux Kernel Customization for Embedded Systems. Journal
of Information Science and Engineering, 20(6):1093–1107, 2004.

[40] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Melt-
down: Reading Kernel Memory from User Space. In 27th USENIX
Security Symposium (USENIX Security 18), 2018.

[41] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazag-
naire, S. Smith, S. Hand, and J. Crowcroft. Unikernels: Library operat-
ing systems for the cloud. In Proc. of ACM ASPLOS, Houston, TX, Mar.
2013.

[42] T. Maeda and A. Yonezawa. Kernel mode linux: Toward an operating
system protected by a type theory. In V. A. Saraswat, editor, Ad-
vances in Computing Science – ASIAN 2003. Progamming Languages
and Distributed Computation Programming Languages and Distributed
Computation, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[43] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati, K. Ya-
sukata, C. Raiciu, and F. Huici. My VM is lighter (and safer) than your
container. In Proc. of ACM SOSP, Shanghai, China, Oct. 2017.

[44] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and
F. Huici. ClickOS and the art of network function virtualization. In
Proc. of USENIX NSDI, Seattle, WA, Apr. 2014.

[45] P. Olivier, D. Chiba, S. Lankes, C. Min, and B. Ravindran. A binary-
compatible unikernel. In Proc. of ACM VEE, Apr. 2019.

14

https://aws.amazon.com/lambda/
https://hub.docker.com/
https://dockersl.im/
https://firecracker-microvm.github.io/
https://developer.ibm.com/open/openwhisk/
http://erlangonxen.org
https://wiki.xenproject.org/wiki/Mini-OS
https://elinux.org/images/1/1c/Ben-Yossef-GoodBadUgly.pdf
https://elinux.org/images/1/1c/Ben-Yossef-GoodBadUgly.pdf
https://www.kernel.org/doc/html/latest/x86/pti.html
https://www.kernel.org/doc/html/latest/x86/pti.html
http://man7.org/linux/man-pages/man1/perf.1.html
http://man7.org/linux/man-pages/man1/perf.1.html
https://www.twistlock.com/
https://www.twistlock.com/
http://user-mode-linux.sourceforge.net/
http://user-mode-linux.sourceforge.net/
https://lwn.net/Articles/733405/
https://lwn.net/Articles/733405/
https://github.com/ultract/linux-kernel-tailoring-framework
https://github.com/ultract/linux-kernel-tailoring-framework

[46] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt.
Rethinking the library os from the top down. ACM SIGPLAN Notices,
46(3):291–304, 2011.

[47] O. Purdila, L. A. Grijincu, and N. Tapus. LKL: The Linux kernel library.
In 9th RoEduNet IEEE International Conference, pages 328–333, June
2010.

[48] C. Qian, H. Hu, M. Alharthi, P. H. Chung, T. Kim, and W. Lee. RAZOR:
A Framework for Post-deployment Software Debloating. In Proceedings
of the 28th USENIX Security Symposium, Santa Clara, CA, USA, Aug.
2019.

[49] A. Quach, A. Prakash, and L. Yan. Debloating Software through Piece-
Wise Compilation and Loading. In Proceedings of the 27th USENIX
Security Symposium, Baltimore, MD, USA, Aug. 2018.

[50] V. Rastogi, D. Davidson, L. De Carli, S. Jha, and P. McDaniel. Cimplifier:
Automatically Debloating Containers. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2017),
2017.

[51] A. Raza, P. Sohal, J. Cadden, J. Appavoo, U. Drepper, R. Jones, O. Krieger,
R. Mancuso, and L. Woodman. Unikernels: The next stage of linux’s
dominance. In Proc. of USENIX HotOS, Bertinoro, Italy, May 2019.

[52] X. J. Ren, K. Rodrigues, L. Chen, C. Vega, M. Stumm, and D. Yuan. An
Analysis of Performance Evolution of Linux’s Core Operations. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles,
SOSP ’19, page 554–569, New York, NY, USA, 2019. Association for
Computing Machinery.

[53] D. Schatzberg, J. Cadden, H. Dong, O. Krieger, and J. Appavoo. EbbRT:
A framework for building per-application library operating systems.
In Proc. of USENIX OSDI, Savannah, GA, Nov. 2016.

[54] H. Sharif, M. Abubakar, A. Gehani, and F. Zaffar. TRIMMER: Appli-
cation Specialization for Code Debloating. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering
(ASE ’18), Sept. 2018.

[55] Z. Shen, Z. Sun, G.-E. Sela, E. Bagdasaryan, C. Delimitrou, R. Van Re-
nesse, and H. Weatherspoon. X-Containers: Breaking Down Barriers
to Improve Performance and Isolation of Cloud-Native Containers. In
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS’19), pages 121–135, New York, NY, USA, 2019. ACM.

[56] J. Sincero, R. Tartler, and D. Lohmann. Efficient Extraction andAnalysis
of Preprocessor-Based Variability. ACM SIGPLAN Notices, 46:33–42,
01 2011.

[57] K. Stengel, F. Schmaus, and R. Kapitza. Esseos: Haskell-based tailored
services for the cloud. In Proceedings of the 12th International Workshop
on Adaptive and Reflective Middleware, ARM ’13, pages 4:1–4:6, New
York, NY, USA, 2013. ACM.

[58] C. Sun, Y. Li, Q. Zhang, T. Gu, and Z. Su. Perses: Syntax-guided Program
Reduction. In In Proceedings of the 40th International Conference on
Software Engineering (ASE’18), 2018.

[59] R. Tartler, C. Dietrich, J. Sincero, W. Schröder-Preikschat, and
D. Lohmann. Static analysis of variability in system software: The
90,000 #ifdefs issue. In Proc. of USENIX Annual Technical Conf., Philadel-
phia, PA, June 2014.

[60] R. Tartler, A. Kurmus, B. Heinloth, V. Rothberg, A. Ruprecht,
D. Dorneanu, R. Kapitza, W. Schröder-Preikschat, and D. Lohmann.
Automatic OS Kernel TCB Reduction by Leveraging Compile-time
Configurability. In Proceedings of the 8th USENIX Conference on Hot
Topics in System Dependability (HotDep’12), 2012.

[61] R. Tartler, D. Lohmann, C. Dietrich, C. Egger, and J. Sincero. Configu-
ration coverage in the analysis of large-scale system software. SIGOPS
OSR, 45(3):10–14, 2012.

[62] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A.
Kalodner, V. Kulkarni, D. Oliveira, and D. E. Porter. Cooperation and
security isolation of library oses for multi-process applications. In
Proceedings of the Ninth European Conference on Computer Systems,

page 9. ACM, 2014.
[63] D. Williams and R. Koller. Unikernel monitors: Extending minimalism

outside of the box. In Proc. of USENIX HotCloud, Denver, CO, June
2016.

[64] D. Williams, R. Koller, M. Lucina, and N. Prakash. Unikernels as
processes. In Proc. of ACM SoCC, Carlsbad, CA, Oct. 2018.

[65] D. Williams, R. Koller, and B. Lum. Say goodbye to virtualization for a
safer cloud. In Proc. of USENIX HotCloud, Boston, MA, July 2018.

[66] L. M. Youseff, R. Wolski, and C. Krintz. Linux Kernel Specialization
for Scientific Application Performance. Technical Report 2005-29,
University of California Santa Barbara, 2005.

A LMBench
We present the result of lmbench for microvm and lupine-
general in Table 5.

Op MicroVM Lupine-general
Processor, Processes - times in microseconds - smaller is better
Mhz 4185 4176
null call 0.03 0.03
null I/O 0.08 0.05
stat 0.44 0.25
open clos 0.74 0.43
slct TCP 1.72 1.40
sig inst 0.09 0.07
sig hndl 0.60 0.40
fork proc 57.0 42.8
exec proc 202. 156.
sh proc 620. 498.
Context switching - times in microseconds - smaller is better
2p/0K ctxsw 0.5800 0.4300
2p/16K ctxsw 0.7000 0.5100
2p/64K ctxsw 0.8500 0.6700
8p/16K ctxsw 0.8900 0.7200
8p/64K ctxsw 1.1800 1.0000
16p/16K ctxsw 1.02000 0.81000
16p/64K ctxsw 1.21000 1.02000
Local Communication latencies in microseconds - smaller is better
2p/0K ctxsw 0.580 0.430
Pipe 1.837 1.181
AF UNIX 2.23 1.44
UDP 3.139 1.911
TCP 4.135 2.358
TCP conn 14. 8.21
File & VM system latencies in microseconds - smaller is better
0K Create 2.7555 1.2923
File Delete 1.7523 0.6989
10K Create 8.2451 6.2253
File Delete 3.5362 1.2548
Mmap Latency 832.0 657.0
Prot Fault 0.274 0.279
Page Fault 0.10370 0.07770
100fd selct 0.588 0.458
Local Communication bandwidths in MB/s - bigger is better
Pipe 9183 13.K
AF tNIX 11.K 14.K
TCP 8563 9859
File reread 10.7K 11.8K
Mmap reread 16.0K 15.9K
Bcopy (libc) 12.6K 12.5K
Bcopy (hand) 9052.2 9060.0
Mem read 15.K 15.K
Mem write 12.1K 12.1K

Table 5. LMBench result for microvm and lupine-general

15

	Abstract
	1 Introduction
	2 Unikernels
	2.1 Background
	2.2 Benefits and Techniques
	2.3 The Ideal Unikernel

	3 Lupine Linux
	3.1 Specialization
	3.2 Eliminating System Call Overhead

	4 Evaluation
	4.1 Configuration Diversity
	4.2 Image Size
	4.3 Boot Time
	4.4 Memory Footprint
	4.5 System call latency microbenchmark
	4.6 Application performance

	5 Beyond Unikernels
	6 Discussion
	6.1 Threats to validity
	6.2 Unachieved unikernel benefits

	7 Related Work
	8 Conclusion
	References
	A LMBench

