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Video Analytics Trends

e More cameras and video * Greater ability to extract
data information from video




Video Analytics Pipelines
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Video Analytics Pipelines

Resource Intensive!
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Video Analytics Pipelines

Resource Intensive!
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1) Approximate model
(Focus, OSDI 18)

Frame Filtering
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Frame Filtering

1) Approximate model 2) Binary classifier
(NoScope, VLDB ‘17)
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Frame Filtering

1) Approximate model 2) Binary classifier 3) Pixel-level differences
(Glimpse, SenSys "15)
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Key Question

* Filtering benefits increase closer to the video source

Can we filter frames directly on the camera itself?

* What computational resources are available on existing cameras?
* How do existing approaches fare?



Camera Market Study

Ambarella CV22 DNNCam
WyzeCam Axis P33 series Cores: 4 Cores: 2
Cores: 1 Cores: 1 Speed: 1.2 GHz Speed: 1.6 GHz
Speed: 1 GHz Speed: 1 GHz Memory: 4 GB Memory: 8 GB
Memory: 128 MB Memory: 512 MB Accelerator: CVFlow GPU: NVIDIA TX2
$19.99 S2418.00

Existing deployments
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Existing Filtering Approaches

* Approximate models: too slow on camera (Tiny YOLO: 0.6 fps)
* Binary classification — misses 45% of filtering opportunities




Using Frame Differencing Effectively
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Best Threshold

* Dynamic threshold to deal
with rapid changes
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* Expand beyond pixel comparison

Pixel: 0.016
Area: 0.145

Pixel: 0.003
~ Area: 0.830
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Reducto Overview

* Challenge #1: Which filtering threshold to use?
* Challenge #2: Which differencing feature to use?

N

Camera \2 Server

Sends filtered frames

Guides filtering

e~

Wimpy cameras can use cheap differencing techniques to

filter frames effectively with guidance from a server
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Challenge #1: Threshold

* Building table is expensive -> run on server
* Looking up table is cheap -> run on camera
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Challenge #2: Differencing Feature

* Calculating best feature is expensive -> run on server

Extract all
differencing features

% frames filtered
while meeting
accuracy

Best feature =
feature that
filters most

frames
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Challenge #2: Differencing Feature

* Best feature changes between query types but not between videos

Bounding box query Counting query
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Offline:
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Online:
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Evaluation: Methodology

* Three queries: detection,
counting, tagging

* 8 traffic videos: 25 10-min clips
each

* DNN on server: YOLOvV3

* Camera: Raspberry Pi Zero or
VM with matching resources

Sample screenshots
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Evaluating Reducto

* Reducto vs. offline optimal filtering
*Speed on Camera

* Compute and bandwidth savings



Reducto vs. Offline Optimal Filtering
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Speed on Camera

*47.8 fps on Raspberry Pi Zero

Extract frame features
99.7 fps

Calculate frame
difference
129.5 fps

Hash table lookups
318.6 fps




Resource Savings

Network

* Reducto saves average of
22% bandwidth

Fraction Bandwidth

Filtered (%)  Savings (%)
Baseline 0.00 0.00
Reducto 53.42 22.30

Offline 72.80 39.33

Compute

* Reducto doubles backend
processing speed

Backend
processing (fps)
Baseline 41.13
Reducto 86.21
Offline 140.01



Resource Savings

Network Compute
* Reducto saves average of * Reducto doubles backend
22% bandwidth processing speed

[ Baseline EZZ Reducto ES Offline

2.0
=1 & End-to-End Latency:
Biod Reduces median response
8, *% I:@ % time by 22-26% (within
O'O 13% of offline optimal)
Verizon LTE 24 Mbps 60 Mbps

20ms RTT 5ms RTT



Comments

*Pros:
* Insightful observation & significant performance.
* Very good writings. Explain the design choices well.

e Cons:

* This work is based on “frame filter” types of work. The idea itself is not very
novel.

* Takeaway:
* Use comprehensive data and survey to support motivation & observations.
* Good Explanation for design choice & observations makes good paper.
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