Reducto: On-Camera Filtering
for Resource-Efficient
Real-Time Video Analytics

Yuangi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei Wang, Harry Xu, Ravi Netravali

Presented by Hongpeng Guo

Slides are based on SIGCOMMZ20 presentation from Arthi Padmanabhan.

Video Analytics Trends

e More cameras and video * Greater ability to extract
data information from video

Video Analytics Pipelines

Goals:
_ (0)
Accur:f\cy target (e.g., 90%) Location
- Real-time (e.g., 30 fps) of all cars?
L
/
Y et || Query
o response \
Frames

DNNs (e.g., Faster RCNN) Number

of buses?

Video Analytics Pipelines

Resource Intensive!

1 video at 1080p: 2 Mbps Location
of all cars?

~wo7 | | Query
“ response

/N
o Jo

Frames

DNNs (e.g., Faster RCNN) Number

of buses?

Video Analytics Pipelines

Resource Intensive!

Faster RCNN: 6 sec to process 1

sec of video on $S6000 GPU Location
of all cars?

7 | | Query
\D response

/N
o Jo

Frames

DNNs (e.g., Faster RCNN) Number

of buses?

1) Approximate model
(Focus, OSDI 18)

Frame Filtering

Approximate
model (e.g.,
Tiny YOLO):

low
confidence?

Yes

Query
response

DNNs

No

Frame Filtering

1) Approximate model 2) Binary classifier
(NoScope, VLDB ‘17)
Binary Ye
o classifier: S — .| Query
. response
frame contains
car?

DNNs

Frame Filtering

1) Approximate model 2) Binary classifier 3) Pixel-level differences
(Glimpse, SenSys "15)

Pixel-level
| differences: Yes o
frame change response
above
?
threshold: DNNs

Key Question

* Filtering benefits increase closer to the video source

Can we filter frames directly on the camera itself?

* What computational resources are available on existing cameras?
* How do existing approaches fare?

Camera Market Study

Ambarella CV22 DNNCam
WyzeCam Axis P33 series Cores: 4 Cores: 2
Cores: 1 Cores: 1 Speed: 1.2 GHz Speed: 1.6 GHz
Speed: 1 GHz Speed: 1 GHz Memory: 4 GB Memory: 8 GB
Memory: 128 MB Memory: 512 MB Accelerator: CVFlow GPU: NVIDIA TX2
$19.99 S2418.00

Existing deployments

10

Existing Filtering Approaches

* Approximate models: too slow on camera (Tiny YOLO: 0.6 fps)
* Binary classification — misses 45% of filtering opportunities

Using Frame Differencing Effectively

OCOOCCOO —

Best Threshold

* Dynamic threshold to deal
with rapid changes

—a— Edge for Detection —— Afea for Counting

ocnhvhrO®O

I 1 1
0 50 100 150 200 250
Time elapsed in seconds

* Expand beyond pixel comparison

Pixel: 0.016
Area: 0.145

Pixel: 0.003
~ Area: 0.830

12

Reducto Overview

* Challenge #1: Which filtering threshold to use?
* Challenge #2: Which differencing feature to use?

N

Camera \2 Server

Sends filtered frames

Guides filtering

e~

Wimpy cameras can use cheap differencing techniques to

filter frames effectively with guidance from a server

13

Challenge #1: Threshold

* Building table is expensive -> run on server
* Looking up table is cheap -> run on camera

0.03
0.01 0.15 0.98
0.04 0.35 0.92
O e o060 088 0.03 - 0.05 0.04
~ 0.05-0.07 0.01
0.01 0.12 0.94
N Extract
differencing e
feature I R

0.07

14

Challenge #2: Differencing Feature

* Calculating best feature is expensive -> run on server

Extract all
differencing features

% frames filtered
while meeting
accuracy

Best feature =
feature that
filters most

frames

15

Challenge #2: Differencing Feature

* Best feature changes between query types but not between videos

Bounding box query Counting query

MPixel MEdge MArea

MPixel MEdge MArea

0.99
- 0.98
Q
g 0.97
T 0.96
0
£ 0.95
= 0.94
E’ 0.93
v 0.92 —
0.91

0.9
Newark LaGrange Southampton

' Newark
LaGrange Southampton ewar

16

Offline:

N

Putting It Together

T

Hash tIabIe

Best|feature
(e.g}, Edge)

Profiler

Hash table
generator

17

Online:

Putting It Together

Extract
diff

Calculate

| threshold

Diff >
threshold?

E

Yes

ML
pipeline

Query
response

18

Evaluation: Methodology

* Three queries: detection,
counting, tagging

* 8 traffic videos: 25 10-min clips
each

* DNN on server: YOLOvV3

* Camera: Raspberry Pi Zero or
VM with matching resources

Sample screenshots

19

Evaluating Reducto

* Reducto vs. offline optimal filtering
*Speed on Camera

* Compute and bandwidth savings

Reducto vs. Offline Optimal Filtering

Reducto filters

36-51% of frames

while meeting 1
accuracy target 0.98

0.96
0.94

> 0.92

©

S 0.9

3

< 0.88
0.86
0.84
0.82
0.8

M Detection

21

Speed on Camera

*47.8 fps on Raspberry Pi Zero

Extract frame features
99.7 fps

Calculate frame
difference
129.5 fps

Hash table lookups
318.6 fps

Resource Savings

Network

* Reducto saves average of
22% bandwidth

Fraction Bandwidth

Filtered (%) Savings (%)
Baseline 0.00 0.00
Reducto 53.42 22.30

Offline 72.80 39.33

Compute

* Reducto doubles backend
processing speed

Backend
processing (fps)
Baseline 41.13
Reducto 86.21
Offline 140.01

Resource Savings

Network Compute
* Reducto saves average of * Reducto doubles backend
22% bandwidth processing speed

[Baseline EZZ Reducto ES Offline

2.0
=1 & End-to-End Latency:
Biod Reduces median response
8, *% I:@ % time by 22-26% (within
O'O 13% of offline optimal)
Verizon LTE 24 Mbps 60 Mbps

20ms RTT 5ms RTT

Comments

*Pros:
* Insightful observation & significant performance.
* Very good writings. Explain the design choices well.

e Cons:

* This work is based on “frame filter” types of work. The idea itself is not very
novel.

* Takeaway:
* Use comprehensive data and survey to support motivation & observations.
* Good Explanation for design choice & observations makes good paper.

Online:

Putting It Together

Extract
diff

Calculate
threshold

Diff >
threshold?

T

Updated

hash

"ot hresh

Yes

table

Hash table
generator

ML
pipeline

Query

response

26

Online:

Putting It Together

Extract
diff

Calculate

| threshold

Diff >
threshold?

E

Yes

ML
pipeline

Query
response

27

