
A Comparison of Software and Hardware Techniques for x86 Virtualization
Keith Adams,Ole Agesen

Presenter: Jovan Stojkovic



Classical Virtualization
u Popek and Goldberg’c criteria:

u 1. Fidelity

u 2. Performance

u 3. Safety

u Trap-and-emulate technique

u Classically virtualizable architecture

u The most important ideas from classical VMM implementations

u De-privileging

u Primary and shadow structures

u Memory traces



De-privileging

u A classical VMM executes guest operating systems directly, but at a reduced 
privilege level.

OS

apps

kernel 
mode

user 
mode

virtual machine monitor

OS

apps



Shadow and Primary Structures

u Privileged state of each guest differs from that of the underlying hardware 

u Basic function of VMM is to meet guest’s expectation 

u To accomplish this VMM derives shadow structures from guest-level primary 
structures 

u Primary structures reflect the state of guest 

u VMM-level shadow structures are copies of guest’s primary structures 

u These structures are kept coherent using – memory tracing



Memory Tracing

u On-CPU privileged state – handled trivially 

u Includes - Page table pointer register, processor status register etc

u Guest access to these registers coincide with trapping instructions 

u On trap VMM refers to the corresponding shadow of the guest register structure in 
the instruction emulation  

u Off-CPU privileged data 

u Guest access to these do not coincide with trapping instructions 

u Example : Guest PTEs are considered privileged data – dependencies on this are not 
accompanied by traps 

u They can be modified by any store in guest instruction stream 

u VMM cannot maintain coherency of shadow structures 

u VMMs use hardware page protection mechanisms to trap access to in memory 
primary structures – memory tracing



Refinements to classical virtualization

u Traps are expensive (~3000 cycles)

u Many traps unavoidable

u E.g., page faults

u Important enhancements

u “Paravirtualization” to reduce traps (e.g., Xen)

u Hardware VM modes (e.g., IBM s370)



Can x86 trap-and-emulate?

u No

u Visibility of privileged state - current privilege level (CPL) is stored in the low two 
bits of %cs

u Lack of traps when privileged instructions run at user-level

u Classic Example:  popf instruction

u Same instruction behaves differently depending on execution mode

u User Mode:  changes ALU flags

u Kernel Mode:  changes ALU and system flags

u Does not generate a trap in user mode



Software VMM
u The guest executes on an interpreter instead of directly on a physical CPU

u The interpreter separates virtual state (the VCPU) from physical state (the CPU)

u Performance issues

u Binary translation can combine the semantic precision of interpretation with 
high performance

Properties

Binary Input is binary x86 code

Dynamic Translation happens at runtime

On demand Code is translated only when it is about to execute

System level The translator makes no assumptions about the guest code

Subsetting Input is full x86 instruction set, output safe subset

Adaptive Translated code is adjusted to improve overall efficiency



Simple Binary 
Translation
u Translator classifies the bytes as 
prefixes, opcodes or operands to 
produce intermediate 
representation (IR) objects and 
accumulates them into a translation 
unit (TU)

u Each IR object represents one 
guest instruction



Simple Binary Translation

u Most instructions can be translated IDENT

u Exceptions:

u PC-relative addressing

u Direct control flow

u Indirect control flow (jmp, call, ret)

u Privileged instructions

u Switching guest execution between BT mode and direct execution as the 
guest switches between kernel- and user-mode à limit BT overheads to 
kernel code



Simple Binary Translation - Example

u Each translator invocation 
consumes one TU and produces 
one compiled code fragment 
(CCF)



Adaptive Binary Translations

u Privileged instruction traps –
eliminated by simple BT

u Non-privileged instructions (e.g. 
load, store) accessing sensitive 
data such as page tables 

u Strategy : innocent until proven 
guilty 

u Identify the CCF that traps 
frequently 

u IDENT translation type is 
adapted to SIMULATE 
translation type 

u Patch CCF5 with a jump in 
CCF1 

u This avoids trap in CCF1



Hardware Virtualization 

u x86 architecture 
extensions

u virtual machine 
control block (VMCB)

u guest vs host mode

u vmrun and exit 
instructions

u diagnostic fields in 
the VMCB aid the 
VMM in handling the 
exit



Qualitative 
comparison

u BT wins:

u Trap elimination

u Emulation speed

u Callout avoidance

u HW wins:

u Code density

u Precise exceptions

u System calls



Experiments

u Software VMM – VMware Player 1.0.1 

u Hardware VMM – VMware implemented experimental hardware assisted VMM 

u Host – HP workstation, VT-enabled Virtual Machines 18 

u Host – HP workstation, VT-enabled 

u 3.8 GHz Intel Pentium 

u All experiments are run natively, on software VMM and on Hardware-assisted 
VMM



Experiments: User-Level Computations
uBenchmarks used: 

uSPECint 2000 benchmark on 
Red Hat Linux 3 

uSPECjbb 2005 on Windows 
2003 • Observations: 

uWith SPECint benchmarks 

uNear native performance

uAverage slowdown of 4% for 
software VMM 

uAverage slowdown of 5% for 
hardware VMM 

uOverhead could be due 
to host background 
activity, housekeeping 
kernel threads 

uWith SPECjbb benchmarks 

uBoth very close to native 
performance – 99% with 
Hardware VMM and 98% in 
Software VMM



Experiments: Macrobenchmarks

u CompileWin - a larger gap 
relative to native due to IPC 
overheads (additional 
context switches) from the 
Cygwin UNIX emulation 
environment

u ApacheLin – process based

u ApacheWin – thread based

u LargeRAM - component 
exhausts the 1GB of RAM 
available in both host and 
guest, leading to paging

u 2DGraphics – system calls



Experiments: Forkwait Test

u Focuses intensely on virtualization-sensitive 
operations, resulting in low performance 
relative to native execution

u Test to stress process creation and destruction 

u system calls, context switching, page table 
modifications, page faults 

u Results – to create and destroy 40000 processes 

u Host – 6 seconds 

u Software VMM – 36.9 seconds 

u Hardware VMM – 106.4 seconds



Experiments: Virtualization 
Nanobenchmarks

u Series of 
“nanobenchmarks” that 
each exercise a single 
virtualization-sensitive 
operation

u in and cr8wr show that 
Software VMM can be even 
faster than Native

u syscall, divzero and callret
have similar performance in 
Hardware VMM and Native

u pgfault and ptemod show 
where is the biggest 
overhead of virtualization



Software and Hardware Opportunities 

u Many of the difficult cases for the hardware VMM examined surround MMU 
virtualization

u Faster Microarchitecture implementations

u Intel Core Duo already much faster than P4

u Hardware VMM algorithms

u Software/Hardware Hybrid VMM

u Hardware MMU

u Nested paging



Conclusion

u Hardware extensions allow classical virtualization on x86 architecture 

u Extensions remove the need for Binary Translation and simplifies VMM design

u Software VMM fares better than Hardware VMM in many cases 

u context switches, page faults, trace faults, I/O 

u New MMU algorithms might narrow the gap in performance


