
Sequoia: Enabling Quality-of-
Service in Serverless Computing

SoCC 2020

(CS 591 Presentation)

Serverless – Motivation,
Pitfalls and Challenges

Four ways of cloud resource provisionings

https://blogs.oracle.com/developers/functions-as-a-service:-evolution,-use-cases,-and-getting-started

Serverless in the Wild: Characterizing and Optimizing the Serverless Workload at a Large Cloud Provider

Serverful vs. Serverless

• Serverful
• User manages resources by VMs

• Responsibilities include…
• Charge by the time of VMs being

spawned

• Serverless
• User spawn applications in the form

of chained functions
• Charge by the resource time used by

each function invocation

App 1 App 1 App 1 App 1

App 2 App 2 App 2

App 1 App 1 App 1

App 2 App 2 App 2

VM1

VM2

App 1:
FN1

App 1:
FN 3

App 1:
FN1

App 1:
FN2

App 2:
FN3

App 2:
FN3

App 2:
FN2

App 2:
FN3

App 2:
FN2

App 2:
FN3

App 1:
FN1

App 1:
FN3

App 1:
FN1

Compute

Storage

Compute

Storage

Compute
Resources

Storage
Resources

Users’ view of Users’ view of

Cloud Programming Simplified: A Berkeley
View on Serverless Computing
• Three major differences vs. serverful computing

• Decoupled computation and storage. The storage and computation scale separately
and are provisioned and priced independently.

• Executing code without managing resource allocation.
• Paying in proportion to resources used instead of for resources allocated.

• Limitations of today’s serverless platforms
• High cost accessing cloud storage at fine granularity

• States maintained remotely at cloud storage and accessed frequently
• Lack of fine-grained coordination

• Execution dependency between tasks requires handling in a scalable fashion
• Inefficient use of network resources

• VMs provide opportunities to optimize network usage
• Unpredictable performance

• Deployment environment is beyond users’ control

Cloud Programming Simplified: A Berkeley
View on Serverless Computing
• Three major differences vs. serverful computing

• Decoupled computation and storage. The storage and computation scale separately
and are provisioned and priced independently.

• Executing code without managing resource allocation.
• Paying in proportion to resources used instead of for resources allocated.

• Limitations of today’s serverless platforms
• High cost accessing cloud storage at fine granularity

• States maintained remotely at cloud storage and accessed frequently
• Lack of fine-grained coordination

• Execution dependency between tasks requires handling in a scalable fashion
• Inefficient use of network resources

• VMs provide opportunities to optimize network usage
• Unpredictable performance

• Deployment environment is beyond users’ control

Sequoia: Enabling Quality-of-Service in
Serverless Computing
• Motivation:
• Function scheduling is largely done in the FIFO fashion
• Doesn’t support function performance with QoS

• Need a ecosystem with QoS control
• Enforce policy on functions across chains, or within chains
• Drop-in front-end with policy enforcer

Sequoia: Enabling Quality-of-Service in
Serverless Computing

Single: the simplest workload consisting of
individual independent requests.

Linear-N: A serverless chain where every
serverless function invokes up to one new
serverless function.

Fan-N: Another chain where multiple tasks
depend on a previous function’s completion.

Thee types of workload chains

Conclusion:
(i) scheduling across frameworks follows a simple FIFO queuing model and
(ii) scheduling is performed on a per-function basis (instead of other policies like per-chain).

Limitations: Inconsistent and incorrect
concurrency limits

IBM: Configured: Concurrency up to 1000. Actual: 1200
Azure: Configured: Max functions up to 1000, max instances: 200. Actual: 8000 and 440
GCF: Configured: CPU usage is configured to reach 40M MHz/s . Actual: 90M MHz/s

When limits are under intended values, workloads may unexpectedly encounter poor performance or increased drops.
When limits are over intended values, developers may incur higher costs than budgeted for.

Limitations: Mid-chain Drops
Mid-chain drops: Functions issued beyond hard-concurrency limit
will be dropped or queued
• Developers may rely on function chain completion, and when

function chains drop mid-chain, incorrectness may arise.
• Solving problem from application levels increase developer’s

effort, defeating purpose of Serverless architecture
• Resource waste for incomplete function chains

Fan-2 Burst workload: Burst set to concurrency limit (1000), result
in total concurrency of 2000: 48 – 54% complete successfully

Limitations: Burst Intolerance

Inconsistent achievable concurrency:
• Concurrency ranges from

approximately 1,000-2,000 when a
large burst of 6,000 HTTP requests is
invoked.

• Bursts repeated over 5 iterations
have inconsistent achievable
concurrency (5a)

• Significant loss of consistency in
concurrency for functions with cold
starts (introduced by bursts)

Burst intolerance limits achievable
concurrency, which in turn creates loss
or queuing when demands spike.

Limitations: HTTP Prioritization

HTTP requests are being prioritized:
• Fan-2 workload (𝜆1: HTTP, 𝜆2, 𝜆3:

background work) that saturate
concurrency limit

• Single workload (𝜆4: HTTP) from
time 500-1000

• 𝜆1 and 𝜆4 have concurrencies
increased over time (prioritized over
𝜆2, 𝜆3)

• HTTP functions prioritized over
regular workload, for unknown
reasons

Limitations: Insufficient Resource Allocation

Insufficient resource allocation: Using a much
higher VM/container pool than the concurrency
limit ensures faster scale-up and less cold-starts.
This leads to inefficient resource allocation
• AWS: Bursting Workload with Linear-N topo

with variable length: VMs are not re-used and
of unique VMs increase with chain length
• Linear L2, ideal: 2K Actual: 10K

• IBM: single function sees unique sandboxes
increase even when reused is possible

Inefficient VM/container reuse can increase
overheads such as cold start and also inefficiently
utilize memory.

Limitations: Concurrency Collapse

Concurrency Collapse: Concurrency reaches the
limit but then drops and does not immediately
recover
• The concurrency collapse significantly after 𝜆1

completes
• 𝜆2 and 𝜆3 does not saturate resources after
𝜆1 completes

• Possibly caused by no available container is
readily available after 𝜆1 completes

Sequoia Architecture

Standalone scheduling framework that can be deployed proxy to existing
cloud services
- QoS Scheduler

- Producer: Enqueuing new functions
- Producer: Initializing ChainState (read by RM)
- RM: pulling functions to CRQ (subsequent functions in the chain)

- Logging Framework
- Provide historical information (function performance, error

reporting, details about the underlying containers and VMs
hosting the functions)

- Policy Framework
- An entry point to add, remove, or alter policies in the system
- Policies: Function-level Allocation, Chain-level Allocation,

Reactive Concurrency Allocation, Ongoing Chain Prioritization,
Shortest Job First, Explicit Priority Assignment, Hybrid Scheduler,
Resource-aware Scheduler

Mitigating limitations:

Limiting sending rate improves utilization Limiting sending rate prevents concurrency
collapse (shorten the overall completion time by
5.5X)

QoS based Policy

Function level: Concurrency divided fairly based
on number of function invocations
Chain level: Concurrency divided fairly based on
number of Chains

QoS based Policy
Reactive Concurrency Scheduling:
• Fan-2 and 𝜆4 starts equal
• t = 200: Fan-2 becomes 20 IPS and λ4 becomes

8 IPS (a 2.5:1)
• t = 400: IPS ratios again become equal (17 IPS)
• t = 600: the λ4 IPS becomes 3× the Fan-2 IPS.
• t = 800: ratios are again equal.

List of Papers

• Serverless Computing: Vision, Pitfalls, Challenges:
• Cloud Programming Simplified: A Berkeley View on Serverless Computing
• Serverless Computing: One Step Forward, Two Steps Back

• Serverless computing today, observations:
• Serverless in the Wild: Characterizing and Optimizing the Serverless Workload

at a Large Cloud Provider
• Serverless computing from every aspects:
• Narrowing the Gap Between Serverless and its State with Storage Functions
• Cirrus: a Serverless Framework for End-to-end ML Workflows
• Kappa: A Programming Framework for Serverless Computing
• Serverless Boom or Bust? An Analysis of Economic Incentives

