Sequoia: Enabling Quality-of-
Service in Serverless Computing

SoCC 2020

(CS 591 Presentation)

Serverless — Motivation,
Pitfalls and Challenges

Four ways of cloud resource provisionings

| — -

— P P <P
=] b b <P
— B <,> (h </>
Bare Metal Virtual machines Containers Functions

Code Code

App Container App Container

Language Runtime

App Container
Language Runtime

Operating System Operating System

Hardware

https://blogs.oracle.com/developers/functions-as-a-service:-evolution,-use-cases,-and-getting-started

What is Serverless?

Bare Metal VMs (1aas) Containers Functions (Faa$)
Unit of Scale Server VM Application/Pod Function
Provisioning Ops DevOps DevOps Cloud Provider
Init Time Days ~1 min Few seconds Few seconds
Scaling Buy new hardware Allocate new VMs 1 to many, auto 0 to many, auto

Typical Lifetime
Payment

State

Years
Per allocation

Anywhere

Hours
Per allocation

Anywhere

Minutes
Per allocation

Anywhere

0O(100ms)
Per use

Elsewhere

Serverless in the Wild: Characterizing and Optimizing the Serverless Workload at a Large Cloud Provider

Serverful vs. Serverless

* Serverful * Serverless
e User manages resources by VMs * User spawn applications in the form
« Responsibilities include... of chained functions
* Charge by the time of VMs being * Charge by the resource time used by
spawned each function invocation

App 1: App 1: App 2: :
FN1 FN 3 FN3 Compute

Resources

Compute
VM1

-—— -

g ——————

4
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
ﬁ“‘\
_l\~

Storage
Resources

Compute
VM2

o ———————

Cloud Programming Simplified: A Berkeley
View on Serverless Computing

* Three major differences vs. serverful computing

* Decoupled computation and storage. The storage and computation scale separately
and are provisioned and priced independently.

e Executing code without managing resource allocation.
* Paying in proportion to resources used instead of for resources allocated.

* Limitations of today’s serverless platforms
* High cost accessing cloud storage at fine granularity
 States maintained remotely at cloud storage and accessed frequently
* Lack of fine-grained coordination
* Execution dependency between tasks requires handling in a scalable fashion
* Inefficient use of network resources
* VMs provide opportunities to optimize network usage

e Unpredictable performance
* Deployment environment is beyond users’ control

Cloud Programming Sim
View on Serverless Com

olified: A Berkeley

outing

* Three major differences vs. serverful computing

* Decoupled computation and storage. The

storage and computation scale separately

and are provisioned and priced independently.

e Executing code without managing resource allocation.
* Paying in proportion to resources used instead of for resources allocated.

* Limitations of today’s serverless platforms

* High cost accessing cloud storage at fine granularity
 States maintained remotely at cloud storage and accessed frequently

* Lack of fine-grained coordination

* Execution dependency between tasks requires handling in a scalable fashion

* |nefficient use of network resources

* VMs pr work usage

npredictable performance

* Deployment environment is beyond users’ control

Sequoia: Enabling Quality-of-Service in
Serverless Computing

* Motivation:
* Function scheduling is largely done in the FIFO fashion
* Doesn’t support function performance with QoS

* Need a ecosystem with QoS control
* Enforce policy on functions across chains, or within chains
* Drop-in front-end with policy enforcer

Sequoia: Enabling Quality-of-Service in
Serverless Computing

Thee types of workload chains

Single: the simplest workload consisting of
individual independent requests.

Linear-N: A serverless chain where every r @ @

serverless function invokes up to one new —

serverless function. ‘ \) @
Fan-2 'N@(A/ Combo

Figure 1: Example function
chains in study

—
2

Fan-N: Another chain where multiple tasks
depend on a previous function’s completion.

Conclusion:
(i) scheduling across frameworks follows a simple FIFO queuing model and
(ii) scheduling is performed on a per-function basis (instead of other policies like per-chain).

P

-

Limitations: Inconsistent and incorrect
concurrency limits

o - —_
N P (2}
> > [1 90 j'\:l
W/ T & =2 Y '
> - S |) : =
0 i ! AT —
€ P : o L v P 2160 §
S ‘Concurrency =R ~ © M ' ' 1 A3 —
8 A Completed - - - 8 ao® 8 : - ' 1 Total =
N c | B 1] 1 CPU = =
’ S CC) Q)QQQ ’ ' A 13 =
., 4 4] J ' =
R e Y A ¥ o
Time (sec Tlme sec 4 1 . 2) 2 L L 0
(sec) O D AP AP o P o
(a) IBM Cloud Functions (b) Azure Functions /<‘\ Time (sec)

Figure 2: Incorrect concurrency limits
Figure 3: GCF: MixedChain workload CPU usage
IBM: Configured: Concurrency up to 1000. Actual: 1200
Azure: Configured: Max functions up to 1000, max instances: 200. Actual: 8000 and 440

GCF: Configured: CPU usage is configured to reaclﬂm\MthLs . Actual: 90M MHz/s

— \ —/
\
When limits are under intended values, workloads may unexpectedly encounterwﬁomamincreased drops.
When limits are over intended values, developers may incur higher costs than budgeted for. o
(_\

L e—

Limitations: Mid-chain Drops

Storage Triggered (IBM) ==
Mid-chain drops: Functions issued beyond hard-concurrency limit

Step-Functions (AWS)
will be dropped or queued
e Developers may rely on function chain completion, and when

function chains drop mid-chain, incorrectness may arise. /_/

* Solving problem from application levels increase developer’s R S R
effort, defeating purpose of Serverless architecture Time (sec) '
* Resource waste for incomplete function chains

Completions
%2 %5 %5 "o

Figure 4: Mid-chain drops

Fan-2 Burst workload: Burst set to concurrency limit (1000), result
in total concurrency of 2000: 48 — 54% complete successfully

I

A

Limitations: Burst Intolerance

Inconsistent achievable concurrency:

e Concurrency ranges from
approximately 1,000-2,000 when a
large burst of 6,000 HTTP requests is
invoked.

e Bursts repeated over 5 iterations

Completions
%25 %55 %% "%

Completions
0“?5‘ 0.6\0 Q 2).'00

. . . N Vv o} ™ o) Vv o} ™)
have inconsistent achievable lteration lteration
concurrency (5a)

 Significant loss of consistency in (a) GCF (b) re
concurrency for functions with cold
starts (introduced by bursts) Figure 5: Workload burst intolerance; in Figure 5b blue

bars are cold starts and red bars are warm starts
Burst intolerance limits achievable

concurrency, which in turn creates loss
or queuing when demands spike.

Limitations: HT TP Prioritization

HTTP requests are being prioritized:

* Fan-2 workload (A1: HTTP, 12, 13: AT T A T
background work) that saturate £ Tetet— (é 4 3 Tota
concurrency limit = my = 0

* Single workload (44: HTTP) from g 0;’&: stmtenl § o (" e
time 500-1000 O - O

« A1 and 14 have concurrencies TR S T & @ P
increased over time (prioritized over Time (sec) / Time (sec) /
A2, A3) (a)|]AWS Lambda (b) IBM Cloud Functions

e HTTP functions prioritized over
regular workload, for unknown

s
By \g

___________/

Figure 6: HTTP prioritization

Limitations: Insufficient Resource Allocation

Insufficient resource allocation: Using a much
higher VM/container pool than the concurrency
limit ensures faster scale-up and less cold-starts.
This leads to inefficient resource allocation
* AWS: Bursting Workload with Linear-N topo
with variable length: VMs are not re-used and
of unique VMs increase with chain length
* Linear L2, ideal: 2K Actual: 10K
* IBM: single function sees unique sandboxes
increase even when reused is possible

Inefficient VM/container reuse can increase
overheads such as cold start and also inefficiently
utilize memory.

®* | ' o “Concurrency —
Unique sandbox seen - - -~
N\ e
§ ? *5'390 e
> A0¢ 3 of e
S \o¢ S e
% ="
@& ,\000 M Aty == n\
VR W BB O P P o® ,\006 P 6P
Chain Length Time (sec)
(a) AWS Lambda (b) IBM Cloud Functions

Figure 7: Inefficient resource allocation

oO——D
_————/

Limitations: Concurrency Collapse

Concurrency Collapse: Concurrency reaches the 5\000 | % — 3\000 §1 —
limit but then drops and does not immediately 2l Toal - /[G AP M —
recover 2600 ; g || Tota
* The concurrency collapse significantly after A1 8 o® 8

completes o & s - ot & ‘;8"",;;8“‘”‘;36' '656'5
A2 and A3 does not saturate resources after Time (sec) Time (sec)

A1 completes
* Possibly caused by no available container is . (a) Fan-2 (b) Fan-5

readily available after 11 completes Figure 8JAWS Lambda concurrency collapse

4
(.7

6%

Sequoia Architecture

Standalone scheduling framework that can be deployed proxy to existing
cloud services /
- QoS Scheduler C*\" QoS Scheduler "
- Producer: Enqueuing new functions PR i e e o |
- Producer: Initializing ChainState (read by RM) i % ooy Framenot
- RM: pulling functions to CRQ (subsequent functions in the chain) ™" inrastmucture | 2| q po"cy{fa"fmmy)}
- Logging Framework I %Cd Féturn next_tnvoke
- Provide historical information (function performance, error ansger_| [t) [°°F =) 1
reporting, details about the underlying containers and VMs individual Function g
hosting the functions) Invocations ¥,4\Q Ry
- Policy Framework _ Metadata '
- An entry point to add, remove, or alter policies in the system iﬁ;‘t’gr'fnsss ’>>>>> stoer | | "her”
- Policies: Function-level Allocation, Chain-level Allocation, Logging Framework
Reactive Concurrency Allocation, Ongoing Chain Prioritization,
Shortest Job First, Explicit Priority Assignment, Hybrid Scheduler, Figure 9: Sequoia architecture

Resource-aware Scheduler

Mitigating limitations:

Q[T — Q \
g 2 | ¥ AN,
> ¢ o 1) Total & od
“— | = n 5 0
i »\Q\(‘ § 600 E § N i; V.
N Q »®
’ 2 N\® W \® \b S ©* \ Toa
VRN N Voo VWV ot 0 Y 0 &
. ' Q Q Q
Chain Length Chain Length P P Time (sec)
Time (sec)
(a) AWS Lambda F.igure 11:. Resourc'e allocation in I Figure 12: Resource-aware policy
linear chain analysis (a) Fan-2
prevents concurrency drop
Limiting sending rate improves utilization Limiting sending rate prevents concurrency

collapse (shorten the overall completion time by
5.5X)

QoS based Policy

QO M ——
5‘\0 A2
i A3

GC) 160 Total

=

3 &

S .0

N
OP
3 { \. f}—'—'\—ih |
N AQP ABO

Time (sec) /i

Figure 13: AWS MixedChain baseline

N ®

5 L g can)
n

5 15° A3 S 1%° Chain 3
= Total = Total
g o g %
c - v Aty v
O L L e L g e i) O
S o lf\ ~ S o I

N qf)i 66 19’ AQQ N ® 1 AQQ

Time (sec) AN M\ Time (sec)
(a) Function-level policy (b) Chain-level policy
C-'_—/_\ __/

Figure 14: QoS policy validation

Function level: Concurrency divided fairly based
on number of function invocations

Chain level: Concurrency divided fairly based on
number of Chains

QoS based Policy

Reactive Concurrency Scheduling: |

* Fan-2 and A4 starts equal SA -

* t=200: Fan-2 becomes 20 IPS and A4 becomes [
8 1PS (a2.5:1) Y

e t=400: IPS ratios again become equal (17 IPS)

* t=600: the A4 IPS becomes 3x the Fan-2 IPS. 4\/

e t=800: ratios are again equal. J

)
o
@

AN —
Total

Concurrenc
o)
> D

3

s N

ol A T

?’(30 606 /,‘(30 \6@0
Time (sec)

o

Figure 15: Reactive Concurrency
Sharing with adaptive workload

/0\ 0

Qo

List of Papers

 Serverless Computing: Vision, Pitfalls, Challenges:
* Cloud Programming Simplified: A Berkeley View on Serverless Computing
* Serverless Computing: One Step Forward, Two Steps Back

* Serverless computing today, observations:

* Serverless in the Wild: Characterizing and Optimizing the Serverless Workload
at a Large Cloud Provider

* Serverless computing from every aspects:
* Narrowing the Gap Between Serverless and its State with Storage Functions
* Cirrus: a Serverless Framework for End-to-end ML Workflows
* Kappa: A Programming Framework for Serverless Computing
* Serverless Boom or Bust? An Analysis of Economic Incentives

