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Serverless – Motivation, 
Pitfalls and Challenges



Four ways of cloud resource provisionings

https://blogs.oracle.com/developers/functions-as-a-service:-evolution,-use-cases,-and-getting-started



Serverless in the Wild: Characterizing and Optimizing the Serverless Workload at a Large Cloud Provider 



Serverful vs. Serverless

• Serverful
• User manages resources by VMs

• Responsibilities include…
• Charge by the time of VMs being 

spawned

• Serverless
• User spawn applications in the form 

of chained functions
• Charge by the resource time used by 

each function invocation
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Cloud Programming Simplified: A Berkeley 
View on Serverless Computing 
• Three major differences vs. serverful computing

• Decoupled computation and storage. The storage and computation scale separately 
and are provisioned and priced independently. 

• Executing code without managing resource allocation. 
• Paying in proportion to resources used instead of for resources allocated.

• Limitations of today’s serverless platforms
• High cost accessing cloud storage at fine granularity

• States maintained remotely at cloud storage and accessed frequently
• Lack of fine-grained coordination

• Execution dependency between tasks requires handling in a scalable fashion
• Inefficient use of network resources

• VMs provide opportunities to optimize network usage
• Unpredictable performance

• Deployment environment is beyond users’ control
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Sequoia: Enabling Quality-of-Service in 
Serverless Computing 
• Motivation:
• Function scheduling is largely done in the FIFO fashion
• Doesn’t support function performance with QoS

• Need a ecosystem with QoS control
• Enforce policy on functions across chains, or within chains
• Drop-in front-end with policy enforcer



Sequoia: Enabling Quality-of-Service in 
Serverless Computing 

Single: the simplest workload consisting of 
individual independent requests. 

Linear-N: A serverless chain where every 
serverless function invokes up to one new 
serverless function. 

Fan-N: Another chain where multiple tasks 
depend on a previous function’s completion. 

Thee types of workload chains

Conclusion:
(i) scheduling across frameworks follows a simple FIFO queuing model and 
(ii) scheduling is performed on a per-function basis (instead of other policies like per-chain). 



Limitations: Inconsistent and incorrect 
concurrency limits 

IBM: Configured: Concurrency up to 1000. Actual: 1200
Azure: Configured: Max functions up to 1000, max instances: 200. Actual: 8000 and 440
GCF: Configured: CPU usage is configured to reach 40M MHz/s . Actual: 90M MHz/s

When limits are under intended values, workloads may unexpectedly encounter poor performance or increased drops. 
When limits are over intended values, developers may incur higher costs than budgeted for. 



Limitations: Mid-chain Drops
Mid-chain drops: Functions issued beyond hard-concurrency limit 
will be dropped or queued
• Developers may rely on function chain completion, and when 

function chains drop mid-chain, incorrectness may arise. 
• Solving problem from application levels increase developer’s 

effort, defeating purpose of Serverless architecture
• Resource waste for incomplete function chains

Fan-2 Burst workload: Burst set to concurrency limit (1000), result 
in total concurrency of 2000: 48 – 54% complete successfully



Limitations: Burst Intolerance

Inconsistent achievable concurrency:
• Concurrency ranges from 

approximately 1,000-2,000 when a 
large burst of 6,000 HTTP requests is 
invoked. 

• Bursts repeated over 5 iterations 
have inconsistent achievable 
concurrency (5a)

• Significant loss of consistency in 
concurrency for functions with cold 
starts (introduced by bursts)

Burst intolerance limits achievable 
concurrency, which in turn creates loss 
or queuing when demands spike. 



Limitations: HTTP Prioritization

HTTP requests are being prioritized:
• Fan-2 workload (𝜆1: HTTP, 𝜆2, 𝜆3: 

background work) that saturate 
concurrency limit

• Single workload (𝜆4: HTTP) from 
time 500-1000

• 𝜆1 and 𝜆4 have concurrencies 
increased over time (prioritized over 
𝜆2, 𝜆3)

• HTTP functions prioritized over 
regular workload, for unknown 
reasons



Limitations: Insufficient Resource Allocation

Insufficient resource allocation: Using a much 
higher VM/container pool than the concurrency 
limit ensures faster scale-up and less cold-starts. 
This leads to inefficient resource allocation
• AWS: Bursting Workload with Linear-N topo 

with variable length: VMs are not re-used and 
# of unique VMs increase with chain length
• Linear L2, ideal: 2K Actual: 10K

• IBM: single function sees unique sandboxes 
increase even when reused is possible

Inefficient VM/container reuse can increase 
overheads such as cold start and also inefficiently 
utilize memory. 



Limitations: Concurrency Collapse

Concurrency Collapse: Concurrency reaches the 
limit but then drops and does not immediately 
recover 
• The concurrency collapse significantly after 𝜆1

completes 
• 𝜆2 and 𝜆3 does not saturate resources after 
𝜆1 completes

• Possibly caused by  no available container is 
readily available after 𝜆1 completes 



Sequoia Architecture

Standalone scheduling framework that can be deployed proxy to existing 
cloud services
- QoS Scheduler

- Producer: Enqueuing new functions
- Producer: Initializing ChainState (read by RM)
- RM: pulling functions to CRQ (subsequent functions in the chain)

- Logging Framework
- Provide historical information (function performance, error 

reporting, details about the underlying containers and VMs 
hosting the functions)

- Policy Framework
- An entry point to add, remove, or alter policies in the system 
- Policies: Function-level Allocation, Chain-level Allocation, 

Reactive Concurrency Allocation, Ongoing Chain Prioritization, 
Shortest Job First, Explicit Priority Assignment, Hybrid Scheduler, 
Resource-aware Scheduler



Mitigating limitations:

Limiting sending rate improves utilization Limiting sending rate prevents concurrency 
collapse (shorten the overall completion time by 
5.5X)



QoS based Policy

Function level: Concurrency divided fairly based 
on number of function invocations 
Chain level: Concurrency divided fairly based on 
number of Chains 



QoS based Policy
Reactive Concurrency Scheduling:
• Fan-2 and 𝜆4 starts equal
• t = 200: Fan-2 becomes 20 IPS and λ4 becomes 

8 IPS (a 2.5:1)
• t = 400: IPS ratios again become equal (17 IPS) 
• t = 600: the λ4 IPS becomes 3× the Fan-2 IPS. 
• t = 800: ratios are again equal. 



List of Papers

• Serverless Computing: Vision, Pitfalls, Challenges:
• Cloud Programming Simplified: A Berkeley View on Serverless Computing 
• Serverless Computing: One Step Forward, Two Steps Back 

• Serverless computing today, observations:
• Serverless in the Wild: Characterizing and Optimizing the Serverless Workload 

at a Large Cloud Provider 
• Serverless computing from every aspects:
• Narrowing the Gap Between Serverless and its State with Storage Functions
• Cirrus: a Serverless Framework for End-to-end ML Workflows
• Kappa: A Programming Framework for Serverless Computing 
• Serverless Boom or Bust? An Analysis of Economic Incentives 


