Approximate Query Service on Autonomous IoT Cameras (MobiSys 2020)

Mengwei Xu¹, Xiwen Zhang², Yunxin Liu³ Gang Huang¹, Xuanzhe Liu¹, Felix Xiaozhu Lin² ¹Peking University, ²Purdue University, ³Microsoft Research

Presenter: Rui Yang Date: Oct.22, 2020

Video Analytics Apps

- Busy cross roads
- Retailing store
- Sports stadium
- Parking lots

Urban, residential areas

✓ Wired electricity✓ Good internet

Video Analytics Apps

- Busy cross roads
- Retailing store
- Sports stadium
- Parking lots

Urban, residential areas

- Construction sites
- Cattle farms
- Highways
- Wildlifes

• ...

Rural, off-grid area

Autonomous Camera

- Energy-independent and Compute-independent

Small-sized energy harvester e.g., "10Wh today"

Commodity SoCs, RPI-like, chargeable battery

Autonomous Camera

- Energy-independent and Compute-independent

e.g., "10Wh today"

Commodity SoCs, RPI-like, chargeable battery

Concise, numerical video summaries

- Target video query: object counting (with bounded error)

- Target video query: object counting

- Target video query: object counting
- The central problem: planning constrained energy for counting
 - Energy model: a budget that cannot be exceeded in a horizon (e.g., 24 hrs)
 - Target: smallest mean CI widths across all (30-min) windows in a horizon
 - Trade-offs: frame sampling and NN selections

- Target video query: object counting
- The central problem: planning constrained energy for counting
 - Energy model: a budget that cannot be exceeded in a horizon (e.g., 24 hrs)
 - Target: smallest mean CI widths across all (30-min) windows in a horizon
 - Trade-offs: frame sampling and NN selections
- Solution: two main aspects:
 - Per window: characterizing count actions and outcome
 - Across windows: making joint count decisions on the go

- What's the best count action for a window?
 - A count action: determining (1) an NN and (2) # of frames to process

Energy Consumption = E(NN) * frame_num

- What's the best count action for a window?
 - A count action: determining (1) an NN and (2) # of frames to process

Energy Consumption = E(NN) * frame_num

NN Counters	Input	mAP	Energy
YOLOv3 (Golden, GT) [85]	608x608	33.0	1.00
YOLOv2 [84]	416x416	21.6	0.22
faster rcnn inception-v2[86]	300x300	28.0	0.40
ssd inception-v2 [68]	300x300	24.0	0.08
ssd mobilenet-v2[88]	300x300	22.0	0.05
ssdlite mobilenet-v2[88]	300x300	22.0	0.04

- What's the best count action for a window?
 - A count action: determining (1) an NN and (2) # of frames to process

When energy is low: cheaper NNs win

Bottlenecked by sampling error (frame quantity)

- What's the best count action for a window?
 - A count action: determining (1) an NN and (2) # of frames to process

When energy is low: cheaper NNs win
Bottlenecked by sampling error (frame quantity)
When energy is low: more accurate NNs win
Bottlenecked by NN error (frame quality)

- What's the best count action for a window?
 - A count action: determining (1) an NN and (2) # of frames to process

When energy is low: cheaper NNs win When energy is low: more accurate NNs win

Energy/Cl front: the combination of all "optimal" count actions with varied energy

- How to construct? Error integration
- Depends on the video characteristics

- What's the best count action for a window?
 - A count action: determining (1) an NN and (2) # of frames to process

Different windows have different energy/CI fronts

When energy is low: cheaper NNs win When energy is low: more accurate NNs win

Energy/Cl front: the combination of all "optimal" count actions with varied energy

- How to construct? Error integration
- Depends on the video characteristics

- An Oracle Planner: best performance but unrealistic
 - knows all energy/CI fronts

- An Oracle Planner: best performance but unrealistic
 - knows all energy/CI fronts

- An Oracle Planner: best performance but unrealistic
 - knows all energy/CI fronts

- An Oracle Planner: best performance but unrealistic
 - knows all energy/Cl fronts

- An Oracle Planner: best performance but unrealistic
 - knows all energy/CI fronts
- Challenges:
 - Needs global knowledge (budget planning)
 - On-the-go (cannot delay, needs to provide fresh data for users)

- An Oracle Planner: best performance but unrealistic
 - knows all energy/CI fronts
 - Planned offline
- A learning-based planner: imitating the oracle planner
 - basis: reinforcement learning
 - rationale: daily and temporal patterns

- An Oracle Planner: best performance but unrealistic
 - knows all energy/CI fronts
 - Planned offline
- A learning-based planner: imitating the oracle planner
 - basis: reinforcement learning
 - rationale: daily and temporal patterns
 - offline training -> online prediction
 - Two agents: NN selection and # of frames
 - Observations: knowledge of past windows
 - Penalty: deviation from oracle's decision

- An Oracle Planner: best performance but unrealistic
 - knows all energy/CI fronts
 - Planned offline
- A learning-based planner: imitating the oracle planner
 - basis: reinforcement learning
 - rationale: daily and temporal patterns
 - offline training -> online prediction
 - Enforce energy budget:
 - Different models for different budget level
 - Backstop design in case of no-energy
 - make reservation for future windows
 - Tuning reward functions to be conservative on energy

Elf Implementation

- Capture & processing decoupled for higher energy efficiency
 - Processing batched at the end of each window

- Over 1,000-hr videos
 - Public, 2-week long each stream
- Baselines
 - 1. GoldenNN: most accurate NN
 - 2. UniNN: one fixed best NN
 - 3. Oracle: offline planned
- Small solar panel
 - 10Wh~30Wh per day

Auburn, AL

Hampton, NY

Jackson, WY

Taipei

Taipei

- Average: 11% error, valid and 17%-width Cl
 - 95% confidence level

- Average: 11% error, valid and 17%-width Cl
- Significant improvements over baselines in CI widths
 - The number in the table is how much Elf closer to oracle (best case)

Budget (per day)	10Wh	20Wh	30 Wh
Golden NN	66.6%	59.8%	56.2%
UniNN	41.1%	16.6%	9.7%

- Average: 11% error, valid and 17%-width Cl
- Significant improvements over baselines in CI widths
 - The number in the table is how much Elf closer to oracle (best case)
 - Very close to oracle

- Average: 11% error, valid and 17%-width Cl
- Significant improvements over baselines in CI widths
- Very close to oracle
- What if we have AI accelerators?
 - Cls are reduced noticeably (by 22.1%–33.1%)
 - Still cannot process every frame (short of energy)

Summary

- Autonomous camera: expanding the geo-frontier of video analytics
 - Energy-independent and compute-independent
- Elf: the first runtime for autonomous camera
 - Target query: object counting
 - Key idea: count planning per- and across-windows
- Prototyped on heterogeneous hardware
- Evaluated on over 1,000-hr videos
 - 11% error, 17% CI width

Very high-level thoughts of the paper

- Pros:
 - Clear, precise problem definition, use case
 - Comprehensive discussion and consideration (design & expr)
- Cons:
 - Not exactly a bounded error. Error aggregation function looks empirical
 - Not sure how easy that can be applied to other query / problem
 - Experiments are still based on urban data
- Maybe a further topic
 - Duplicated / distinct object.

Moving computation to IoT devices

Reasons to keep it local / on-device:

- Device is becoming more powerful and chips are cheaper
- Privacy issue
- Data is becoming too large to transmit and compute with in-different cost

Challenges of IoT computation-related system

- Limited Bandwidth / Unstable wireless
 - 5g-loT (<u>survey</u>)
- Limited energy
- Limited computational power
- Others:
 - Device heterogeneity
 - E.g. <u>Heterogeneous Multi-Mobile Computing</u> (Mobisys 2019)
 - Mobile
 - Context-aware

Some big areas in IoT

- Security
 - Blockchain related (survey)
- Sensing related:
 - E.g. Localization
- Healthcare
- Al on the edge / device
- Application
- Network management, mmWave etc

Feeling some diff between system and IoT research

System: (a little more) driven by expectation (metrics)

IoT: (a little more) limited by constraints